PRODUCT INFORMATION

Rebaudioside D

Item No. 27880

CAS Registry No.: 63279-13-0

Formal Name: (4α)-13-[(O-β-D-glucopyranosyl-

> (1→2)-O-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranosyl) oxy]-kaur-16-en-18-oic acid, 2-O-β-D-glucopyranosyl-β-D-

glucopyranosyl ester

Synonym: Reb D MF: $C_{50}H_{80}O_{28}$ FW: 1,129.2 **Purity:** ≥95%

Supplied as: A crystalline solid

Storage: -20°C Stability: ≥4 years

Item Origin: Plant/Stevia rebaudiana

Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis.

Laboratory Procedures

Rebaudioside D is supplied as a crystalline solid. A stock solution may be made by dissolving the rebaudioside D in the solvent of choice, which should be purged with an inert gas. Rebaudioside D is soluble in organic solvents such as DMSO and dimethyl formamide. The solubility of rebaudioside D in these solvents is approximately 1 mg/ml.

Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of rebaudioside D can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of rebaudioside D in PBS, pH 7.2, is approximately 10 mg/ml. We do not recommend storing the agueous solution for more than one day.

Description

Rebaudioside D is a natural non-caloric sweetener.^{1,2} It is a steviol glycoside that has been found in S. rebaudiana leaves. Rebaudioside D, similarly to rebaudioside A (Item No. 11894) and rebaudioside C (Item No. 11895), is metabolized by gut microbiota to steviol (Item No. 10011344), a compound whose safety is widely studied.3,4

References

- 1. Chen, L., Sun, P., Zhou, F., et al. Synthesis of rebaudioside D, using glycosyltransferase UGTSL2 and in situ UDP-glucose regeneration. Food Chem. 259, 286-291 (2018).
- 2. Prakash, I., Campbell, M., and Chaturvedula, V.S.P. Catalytic hydrogenation of the sweet principles of Stevia rebaudiana, Rebaudioside B, Rebaudioside C, and Rebaudioside D and sensory evaluation of their reduced derivatives. Int. J. Mol. Sci. 13(11), 15126-15136 (2012).
- Purkayastha, S., Markosyan, A., Prakash, I., et al. Steviol glycosides in purified stevia leaf extract sharing the same metabolic fate. Regul. Toxicol. Pharmacol. 77, 125-133 (2016).
- 4. Brusick, D.J. A critical review of the genetic toxicity of steviol and steviol glycosides. Food Chem. Toxicol. 46(Suppl 7), S83-S91 (2008).

WARNING
THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.

WARRANTY AND LIMITATION OF REMEDY

subject to Cayman's Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website

Copyright Cayman Chemical Company, 10/18/2022

CAYMAN CHEMICAL

1180 EAST ELLSWORTH RD ANN ARBOR, MI 48108 · USA PHONE: [800] 364-9897

[734] 971-3335

FAX: [734] 971-3640 CUSTSERV@CAYMANCHEM.COM WWW.**CAYMANCHEM**.COM