PRODUCT INFORMATION

5,6-trans-Vitamin D₂

Item No. 31225

CAS Registry No.:		HO
Formal Name:	(1S,3E)-3-[(2E)-2-[(1R,3aS,7aR)-1-[(1R)-	
	1,5-dimethylhexyl]octahydro-7a-methyl-	
	4H-inden-4-ylidene]ethylidene]-4-	\searrow
	methylene-cyclohexanol	l
Synonym:	5,6-trans-Cholecalciferol	
MF:	C ₂₇ H ₄₄ O	н
FW:	384.6	\sim
Purity:	≥98%	
UV/Vis.:	λ _{max} : 272 nm	
Supplied as:	A crystalline solid	
Storage:	-20°C	
Stability:	≥4 years	
1 6 1		

Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis.

Laboratory Procedures

5,6-trans-Vitamin D₃ is supplied as a crystalline solid. A stock solution may be made by dissolving the 5,6-trans-vitamin D₃ in the solvent of choice, which should be purged with an inert gas. 5,6-trans-Vitamin D_3 is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide. The solubility of 5,6-trans-vitamin D₃ in these solvents is approximately 30, 3, and 25 mg/ml, respectively.

Description

5,6-trans-Vitamin D₃ is an isomer of vitamin D₃ (Item No. 11792).¹ In vivo, 5,6-trans-vitamin D₃ (1, 3, and 10 µg/day) increases tibia ash weight and bone mineralization in vitamin D-deficient chicks. 5,6-trans-Vitamin D_3 (25 µg/animal) induces intestinal calcium transport and bone calcium mobilization in anephric rats fed a low-calcium and vitamin D-deficient diet.²

References

- 1. Boris, A., Hurley, J.F., and Trmal, T. Relative activities of some metabolites and analogs of cholecalciferol in stimulation of tibia ash weight in chicks otherwise deprived of vitamin D. J. Nutr. 107(2), 194-198 (1977).
- Holick, M.F., Garabedian, M., and DeLuca, H.F. 5,6-Trans isomers of cholecalciferol and 25-hydroxycholecalciferol. Substitutes for 1,25-dihydroxycholecalciferol in anephric animals. Biochemistry 11(14), 2715-2719 (1972).

WARNING THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

SAFETY DATA

This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.

WARRANTY AND LIMITATION OF REMEDY

Suyer agrees to purchase the material subject to Cayman's Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website.

Copyright Cayman Chemical Company, 12/13/2022

CAYMAN CHEMICAL

1180 EAST ELLSWORTH RD ANN ARBOR, MI 48108 · USA PHONE: [800] 364-9897 [734] 971-3335 FAX: [734] 971-3640 CUSTSERV@CAYMANCHEM.COM WWW.CAYMANCHEM.COM