

PRODUCT DATA SHEET

Methyl 2-hydroxyeicosanoate

Catalog number: 1710

Synonyms: 2-Hydroxy C20:0 methyl ester

Source: synthetic

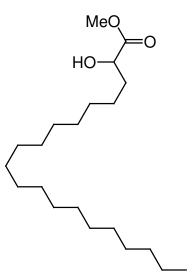
Solubility: chloroform, ethyl ether

CAS number: 16742-49-7

Molecular Formula: C₂₁H₄₂O₃ **Molecular Weight:** 343

Storage: -20°C

Purity: TLC: >98% GC: >98%; identity


confirmed by MS

TLC System: hexane/ethyl ether (70:30)

Appearance: solid

Application Notes:

This product is a high purity 2-hydroxy fatty acid methyl ester that is ideal as a standard and for biological systems. 2-Hydroxy very long chain fatty acids are abundant in nervous tissues and are components of cerebrosides and sulfatides, which are mostly found in the myelin of nervous tissues. They are common in cosmetics, skin creams, and lotions, 2-Hydroxyeicosanoic acid has been reported in the marine sponge Verongula gigantean. 2-hydroxy acids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group and therefore play an important role in the membrane structure.² 2-Hydroxy fatty acids are formed from the oxidation of fatty acids by the enzyme fatty acid 2hydroxylase. This enzyme is also responsible for the formation of 2-hydroxy galactolipids in the peripheral nervous system.³ 2-hydroxy fatty acids are a putative category of root exudate signal perceived by Gigaspora species, stimulating an increase in elongated lateral branches. 4 alpha-Oxidation of 2-hydroxy fatty acids to CO2 and saturated acids occurs in the peroxisome and is unique from the alpha-oxidation of betacarbon branched fatty acids such as phytanic acid. Cells from Zellweger syndrome and peroxisome-deficient cells are unable to undergo alpha-oxidation of these 2-hydroxy

acids although patients with other peroxisomal disorders such as X-linked adrenoleukodystrophy, Refsum disease, and rhizomelic chondrodysplasia punctata are able.⁵ Fumonisin B1, a sphingolipid-like toxin found in molds, enhances the accumulation of sphingolipids and 2-hydroxy fatty acids while decreasing the amount of trihydroxy fatty acids.⁶

Selected References:

- 1. N Carballiera et al. "2-Hydroxy fatty acids from marine sponges 2. The phospholipid fatty acids of the caribbean sponges Verongula gigantea and Aplysina archeri" Lipids, vol. 24 pp. 229-232, 1989
- 2. C. Lendrum et al. "Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes" Langmuir, vol. 27 pp. 4430-4438, 2011
- 3. E. Maldonado et al. "FA2H is responsible for the formation of 2-hydroxy galactolipids in peripheral nervous system myelin" *Journal of Lipid Research*, Vol. 49 pp. 153-161, 2008
- 4. G. Nagahashi and D. Douds Jr. "The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi" *Fungal Biology*, vol. 115 pp. 351-358, 2011
- 5. R. Sandhir, M. Khan, and I. Singh "Identification of the Pathway of *alpha*-Oxidation of Cerebronic Acid in Peroxisomes" *Lipids*, Vol. 35(10) pp. 1127-1133. 2000
- 6. T. Kaneshiro et al. "2-Hydroxyhexadecanoic and 8,9,13-trihydroxydocosanoic acid accumulation by yeasts treated with fumonisin B1" *Lipids*, vol. 28 pp. 397-401, *1993*

This product is to be used for research only. It is not intended for drug or diagnostic use, human consumption or to be used in food or food additives. Matreya assumes no liability for any use of this product by the end user. We believe the information, offered in good faith, is accurate.