Aldosterone EIA Kit - Monoclonal
Catalog No. 10004377 (Strip Plate)
Catalog No. 10004553 (Solid Plate)
TABLE OF CONTENTS

GENERAL INFORMATION
3 Materials Supplied
4 Precautions
4 If You Have Problems
4 Storage and Stability
5 Materials Needed but Not Supplied

INTRODUCTION
6 Background
7 About This Assay
7 Description of ACE\textsuperscript{TM} Competitive EIA
8 Biochemistry of Acetylcholinesterase
10 Definition of Key Terms

PRE-ASSAY PREPARATION
11 Buffer Preparation
12 Sample Preparation

ASSAY PROTOCOL
15 Preparation of Assay-Specific Reagents
17 Plate Set Up
18 Performing the Assay

ANALYSIS
21 Calculations
24 Performance Characteristics

RESOURCES
28 Troubleshooting
29 References
29 Related Products
30 Warranty and Limitation of Remedy
31 Plate Template
32 Notes

GENERAL INFORMATION

Materials Supplied

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Item</th>
<th>96 wells Quantity/Size</th>
<th>480 wells Quantity/Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>10004381</td>
<td>Aldosterone Monoclonal Antibody</td>
<td>1 vial/100 dtn</td>
<td>1 vial/500 dtn</td>
</tr>
<tr>
<td>10004382</td>
<td>Aldosterone AChE Tracer</td>
<td>1 vial/100 dtn</td>
<td>1 vial/500 dtn</td>
</tr>
<tr>
<td>10004383</td>
<td>Aldosterone EIA Standard</td>
<td>1 vial</td>
<td>1 vial</td>
</tr>
<tr>
<td>400060</td>
<td>EIA Buffer Concentrate (10X)</td>
<td>2 vials/10 ml</td>
<td>4 vials/10 ml</td>
</tr>
<tr>
<td>400062</td>
<td>Wash Buffer Concentrate (400X)</td>
<td>1 vial/5 ml</td>
<td>1 vial/12.5 ml</td>
</tr>
<tr>
<td>400035</td>
<td>Tween 20</td>
<td>1 vial/3 ml</td>
<td>1 vial/3 ml</td>
</tr>
<tr>
<td>400009</td>
<td>Goat Anti-Mouse IgG Coated Plate</td>
<td>1 plate</td>
<td>5 plates</td>
</tr>
<tr>
<td>400012</td>
<td>96-Well Cover Sheet</td>
<td>1 cover</td>
<td>5 covers</td>
</tr>
<tr>
<td>400050</td>
<td>Ellman’s Reagent</td>
<td>3 vials/100 dtn</td>
<td>6 vials/250 dtn</td>
</tr>
<tr>
<td>400040</td>
<td>EIA Tracer Dye</td>
<td>1 vial</td>
<td>1 vial</td>
</tr>
<tr>
<td>400042</td>
<td>EIA Antiserum Dye</td>
<td>1 vial</td>
<td>1 vial</td>
</tr>
</tbody>
</table>

If any of the items listed above are damaged or missing, please contact our Customer Service department at (800) 364-9897 or (734) 975-3999. We cannot accept any returns without prior authorization.
WARNING: This product is for laboratory research use only: not for administration to humans. Not for human or veterinary diagnostic or therapeutic use.

Precautions

Please read these instructions carefully before beginning this assay.
The reagents in this kit have been tested and formulated to work exclusively with Cayman Chemical's ACE™ EIA Kits. This kit may not perform as described if any reagent or procedure is replaced or modified.

For research use only. Not for human or diagnostic use.

If You Have Problems

Technical Service Contact Information

Phone: 888-526-5351 (USA and Canada only) or 734-975-3888
Fax: 734-971-3641
E-Mail: techserv@caymanchem.com
Hours: M-F 8:00 AM to 5:30 PM EST

In order for our staff to assist you quickly and efficiently, please be ready to supply the lot number of the kit (found on the outside of the box).

Storage and Stability

This kit will perform as specified if stored as directed at -20°C and used before the expiration date indicated on the outside of the box.

Materials Needed But Not Supplied

1. A plate reader capable of measuring absorbance between 405-420 nm.
2. Adjustable pipettes and a repeat pipettor.
3. A source of ‘UltraPure’ water. Water used to prepare all EIA reagents and buffers must be deionized and free of trace organic contaminants (‘UltraPure’). Use activated carbon filter cartridges or other organic scavengers. Glass distilled water (even if double distilled), HPLC-grade water, and sterile water (for injections) are not adequate for EIA. NOTE: UltraPure water is available for purchase from Cayman (Catalog No. 400000).
4. Materials used for Sample Preparation (see page 12).
Background

Aldosterone, a steroid hormone secreted by the adrenal cortex, is the principle mineralocorticoid controlling sodium and potassium balance. The primary role of aldosterone is to promote unidirectional salt reabsorption in a variety of epithelial tissues, the salivary gland, intestine, sweat glands, and the kidney. Aldosterone is synthesized from cholesterol in the zona glomerulosa of the adrenal cortex. Secretion of aldosterone is complicated, being affected by both hormones and electrolytes. However, the renin-angiotensin system (RAS) is the primary regulator of aldosterone secretion. Angiotensin II and potassium stimulate secretion of aldosterone by increasing the rate of synthesis of the hormone. The plasma concentration of aldosterone is about 0.15-0.17 ng/ml. Urinary excretion of aldosterone is approximately 0.15 mg/24 hours.

About This Assay

Cayman’s Aldosterone EIA Kit is a competitive assay that can be used for quantification of aldosterone in plasma, urine, and other sample matrices. The EIA typically displays an IC_{50} (50% B/B_0) of approximately 65 pg/ml and a detection limit (80% B/B_0) of approximately 20 pg/ml.

Description of ACE™ Competitive EIAs

This assay is based on the competition between aldosterone and a aldosterone-acetylcholinesterase (AChE) conjugate (Aldosterone Tracer) for a limited amount of Aldosterone Monoclonal Antibody. Because the concentration of the Aldosterone Tracer is held constant while the concentration of aldosterone varies, the amount of Aldosterone Tracer that is able to bind to the Aldosterone Monoclonal Antibody will be inversely proportional to the concentration of aldosterone in the well. This antibody-aldosterone complex binds to goat polycional anti-mouse IgG that has been previously attached to the well. The plate is washed to remove any unbound reagents and then Ellman’s Reagent (which contains the substrate to AChE) is added to the well. The product of this enzymatic reaction has a distinct yellow color and absorbs strongly at 412 nm. The intensity of this color, determined spectrophotometrically, is proportional to the amount of Aldosterone Tracer bound to the well, which is inversely proportional to the amount of free aldosterone present in the well during the incubation; or

\[
\text{Absorbance} \propto \text{[Bound Aldosterone Tracer]} \propto \frac{1}{[\text{Aldosterone}]}.
\]

A schematic of this process is shown in Figure 1, below.

![Figure 1. Schematic of the ACE™ EIA](image-url)
Biochemistry of Acetylcholinesterase

The electric organ of the electric eel, *Electrophorus electricus*, contains an avid acetylcholinesterase (AChE) capable of massive catalytic turnover during the generation of its electrochemical discharges. The electric eel AChE has a clover leaf-shaped tertiary structure consisting of a triad of tetramers attached to a collagen-like structural fibril. This stable enzyme is capable of high turnover (64,000 s\(^{-1}\)) for the hydrolysis of acetylthiocholine.

A molecule of the analyte covalently attached to a molecule of AChE serves as the tracer in ACE™ enzyme immunoassays. Quantification of the tracer is achieved by measuring its AChE activity with Ellman’s Reagent. This reagent consists of acetylthiocholine and 5,5’-dithio-bis-(2-nitrobenzoic acid). Hydrolysis of acetylthiocholine by AChE produces thiocholine (see Figure 2, on page 9). The non-enzymatic reaction of thiocholine with 5,5’-dithio-bis-(2-nitrobenzoic acid) produces 5-thio-2-nitrobenzoic acid, which has a strong absorbance at 412 nm (\(\varepsilon = 13,600\)).

AChE has several advantages over other enzymes commonly used for enzyme immunoassays. Unlike horseradish peroxidase, AChE does not self-inactivate during turnover. This property of AChE also allows re-development of the assay if it is accidentally splashed or spilled. In addition, the enzyme is highly stable under the assay conditions, has a wide pH range (pH 5-10), and is not inhibited by common buffer salts or preservatives. Since AChE is stable during the development step, it is unnecessary to use a ‘stop’ reagent, and the plate may be read whenever it is convenient.

Figure 2. Reaction catalyzed by acetylcholinesterase
Definition of Key Terms

**Blank:** background absorbance caused by Ellman’s Reagent. The blank absorbance should be subtracted from the absorbance readings of all the other wells.

**Total Activity:** total enzymatic activity of the AChE-linked tracer. This is analogous to the specific activity of a radioactive tracer.

**NSB (Non-Specific Binding):** non-immunological binding of the tracer to the well. Even in the absence of specific antibody a very small amount of tracer still binds to the well; the NSB is a measure of this low binding.

**B₀ (Maximum Binding):** maximum amount of the tracer that the antibody can bind in the absence of free analyte.

**%B/B₀ (%Bound/Maximum Bound):** ratio of the absorbance of a particular sample or standard well to that of the maximum binding (B₀) well.

**Standard Curve:** a plot of the %B/B₀ values versus concentration of a series of wells containing various known amounts of analyte.

**Dtn:** determination, where one dtn is the amount of reagent used per well.

**Note:** Water used to prepare all EIA reagents and buffers must be deionized and free of trace organic contaminants (‘UltraPure’). Use activated carbon filter cartridges or other organic scavengers. Glass distilled water (even if double distilled), HPLC-grade water, and sterile water (for injections) are not adequate for EIA. UltraPure water may be purchased from Cayman (Catalog No. 400000).

**Buffer Preparation**

Store all buffers at 4°C; they will be stable for about two months.

1. **EIA Buffer Preparation**
   - Dilute the contents of one vial of EIA Buffer Concentrate (10X) (Catalog No. 400060) with 90 ml of UltraPure water. Be certain to rinse the vial to remove any salts that may have precipitated. **Note:** It is normal for the concentrated buffer to contain crystalline salts after thawing. These will completely dissolve upon dilution with water.

2. **Wash Buffer Preparation**
   - 5 ml vial Wash Buffer Concentration (400X) (96-well kit; Catalog No. 400062): Dilute to a total volume of 2 liters with UltraPure water and add 1 ml of Tween 20 (Catalog No. 400035).
   - **Or**
   - 12.5 ml vial Wash Buffer Concentration (400X) (480-well kit; Catalog No. 400062): Dilute to a total volume of 5 liters with UltraPure water and add 2.5 ml of Tween 20 (Catalog No. 400035).

Smaller volumes of Wash Buffer can be prepared by diluting the Wash Buffer Concentrate 1:400 and adding Tween 20 (0.5 ml/liter of Wash Buffer).

**Note:** Tween 20 is a viscous liquid and cannot be measured by a regular pipette. A positive displacement pipette or a syringe should be used to deliver small quantities accurately.
Sample Preparation

In general, urine and cell culture supernatant samples may be diluted with EIA buffer and added directly to the assay well. **NOTE:** Aldosterone from cell culture samples could potentially be acetylated at several carbons (C-21, C-20, and C-18). These acetate esters of aldosterone do not efficiently displace the tracer and will be undetected in the assay. This is not a problem with samples collected from animals as esterases in tissue and blood rapidly hydrolyze the esters, which allows aldosterone to be effectively detected in the assay.

Testing for Interference

Plasma, serum, whole blood, as well as other heterogeneous mixtures, such as lavage fluids and aspirates, often contain contaminants which can interfere in the assay. It is best to check for interference before embarking on a large number of sample measurements. To test for interference, dilute one or two test samples to obtain at least two different dilutions of each sample between approximately 20 and 250 pg/ml (i.e., between ~20-80% B/B₀). If the two different dilutions of the sample show good correlation (differ by 20% or less) in the final calculated aldosterone concentration, purification is not required. If you do not see good correlation of the different dilutions, purification is advised. The Extraction Protocol below is one such method.

Determination of Recovery

Determination of percent recovery is recommended when any sample purification is performed. Detailed below are two methods that can be employed to monitor sample recovery. If the Hot Spike method is used, 10,000 cpm of tritium-labeled aldosterone is added directly to the sample and 10% is removed for scintillation counting after purification. If the alternate Cold Spike method is used, the sample must be split prior to purification and an appropriate amount of aldosterone added to one aliquot. The spiked sample is then assayed via EIA alongside the unspiked sample. Calculations for each method are found in the Analysis section on page 21.

General Precautions

- All samples must be free of organic solvents prior to assay.
- Samples should be assayed immediately after collection; samples that cannot be assayed immediately should be stored at -80°C.
- Samples of mouse origin may contain antibodies which interfere with the assay by binding to the goat anti-mouse plate. We recommend that all mouse samples be purified prior to use in this assay.
3. Add 4X the sample volume of methylene chloride and mix thoroughly with a vortexer. Allow layers to separate. Transfer the methylene chloride (lower) layer to a clean tube using a transfer pipette. Repeat this extraction procedure three times.*

4. Evaporate the methylene chloride by heating to 30°C under a gentle stream of nitrogen.

5. Dissolve the extract in 0.5 ml of EIA buffer. Use this for EIA analysis.

6. Use 50 µl of this reconstituted sample for scintillation counting. The remainder is available for use in the EIA.

*If it is necessary to stop during this purification, samples may be stored in the methylene chloride solution at -20°C or -80°C.

**Preparation of Assay-Specific Reagents**

**Aldosterone EIA Standard**

Equilibrate a pipette tip in ethanol by repeatedly filling and expelling the tip with ethanol several times. Using the equilibrated pipette tip, transfer 100 µl of the Aldosterone EIA Standard (Catalog No. 10004383) into a clean test tube, then dilute with 900 µl UltraPure water. The concentration of this solution (the bulk standard) will be 10 ng/ml.

**NOTE:** If assaying culture medium samples that have not been diluted with EIA Buffer, culture medium should be used in place of EIA Buffer for dilution of the standard curve.

To prepare the standard for use in EIA: Obtain eight clean test tubes and number them 1 through 8. Aliquot 900 µl EIA Buffer to tube #1 and 500 µl EIA Buffer to tubes #2-8. Transfer 100 µl of the bulk standard (10 ng/ml) to tube #1 and mix thoroughly. The concentration of this standard, the first point on the standard curve, will be 1 ng/ml (1,000 pg/ml). Serially dilute the standard by removing 500 µl from tube #1 and placing in tube #2; mix thoroughly. Next, remove 500 µl from tube #2 and place it into tube #3; mix thoroughly. Repeat this process for tubes #4-8. These diluted standards should not be stored for more than 24 hours.

**Figure 3. Preparation of the Aldosterone standards**
Aldosterone AChE Tracer
Reconstitute the Aldosterone AChE Tracer as follows:

100 dtn Aldosterone AChE Tracer (96-well kit; Catalog No. 10004382):
Reconstitute with 6 ml EIA Buffer.

OR

500 dtn Aldosterone AChE Tracer (480-well kit; Catalog No. 10004382):
Reconstitute with 30 ml EIA Buffer.

Store the reconstituted Aldosterone AChE Tracer at 4°C (do not freeze!) and use within four weeks. A 20% surplus of tracer has been included to account for any incidental losses.

Tracer Dye Instructions (optional)
This dye may be added to the tracer, if desired, to aid in visualization of tracer-containing wells. Add the dye to the reconstituted tracer at a final dilution of 1:100 (add 60 µl of dye to 6 ml tracer or add 300 µl of dye to 30 ml of tracer).

Aldosterone Monoclonal Antibody
Reconstitute the Aldosterone Monoclonal Antibody as follows:

100 dtn Aldosterone Monoclonal Antibody (96-well kit; Catalog No. 10004381):
Reconstitute with 6 ml EIA Buffer.

OR

500 dtn Aldosterone Monoclonal Antibody (480-well kit; Catalog No. 10004381):
Reconstitute with 30 ml EIA Buffer.

Store the reconstituted Aldosterone Monoclonal Antibody at 4°C. It will be stable for at least four weeks. A 20% surplus of antibody has been included to account for any incidental losses.

Antiserum Dye Instructions (optional)
This dye may be added to the antiserum, if desired, to aid in visualization of antiserum-containing wells. Add the dye to the reconstituted antiserum at a final dilution of 1:100 (add 60 µl of dye to 6 ml antiserum or add 300 µl of dye to 30 ml of antiserum).

Plate Set Up
The 96-well plate(s) included with this kit is supplied ready to use. It is not necessary to rinse the plate(s) prior to adding the reagents. NOTE: If you do not need to use all the strips at once, place the unused strips back in the plate packet and store at 4°C. Be sure the packet is sealed with the desiccant inside.

Each plate or set of strips must contain a minimum of two blanks (Blk), two non-specific binding wells (NSB), two maximum binding wells (B0), and an eight point standard curve run in duplicate. NOTE: Each assay must contain this minimum configuration in order to ensure accurate and reproducible results. Each sample should be assayed at two dilutions and each dilution should be assayed in duplicate. For statistical purposes, we recommend assaying samples in triplicate.

A suggested plate format is shown in Figure 4, below. The user may vary the location and type of wells present as necessary for each particular experiment. The plate format provided below has been designed to allow for easy data analysis using a convenient spreadsheet offered by Cayman (see page 21, for more details). We suggest you record the contents of each well on the template sheet provided (see page 31).

Figure 4. Sample plate format
Performing the Assay

Pipetting Hints

- Use different tips to pipette each reagent.
- Before pipetting each reagent, equilibrate the pipette tip in that reagent (i.e., slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.

Addition of the Reagents

1. EIA Buffer
   Add 100 µl EIA Buffer to Non-Specific Binding (NSB) wells. Add 50 µl EIA Buffer to Maximum Binding (B₀) wells. If culture medium was used to dilute the standard curve, substitute 50 µl of culture medium for EIA Buffer in the NSB and B₀ wells (i.e., add 50 µl culture medium to NSB and B₀ wells and 50 µl EIA Buffer to NSB wells).

2. Aldosterone EIA Standard
   Add 50 µl from tube #8 to both of the lowest standard wells (S8). Add 50 µl from tube #7 to each of the next two standard wells (S7). Continue with this procedure until all the standards are aliquoted. The same pipette tip should be used to aliquot all the standards. Before pipetting each standard, be sure to equilibrate the pipette tip in that standard.

3. Samples
   Add 50 µl of sample per well. Each sample should be assayed at a minimum of two dilutions. Each dilution should be assayed in duplicate (triplicate recommended).

4. Aldosterone AChE Tracer
   Add 50 µl to each well except the Total Activity (TA) and the Blank (Blk) wells.

5. Aldosterone Monoclonal Antibody
   Add 50 µl to each well except the Total Activity (TA), the Non-Specific Binding (NSB), and the Blank (Blk) wells.

<table>
<thead>
<tr>
<th>Well</th>
<th>EIA Buffer</th>
<th>Standard/Sample</th>
<th>Tracer</th>
<th>Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blk</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TA</td>
<td>-</td>
<td>-</td>
<td>5 µl (at devl. step)</td>
<td>-</td>
</tr>
<tr>
<td>NSB</td>
<td>100 µl</td>
<td>-</td>
<td>50 µl</td>
<td>-</td>
</tr>
<tr>
<td>B₀</td>
<td>50 µl</td>
<td>-</td>
<td>50 µl</td>
<td>50 µl</td>
</tr>
<tr>
<td>Std/Sample</td>
<td>-</td>
<td>50 µl</td>
<td>50 µl</td>
<td>50 µl</td>
</tr>
</tbody>
</table>

Table 1. Pipetting summary

Incubation of the Plate

Cover each plate with plastic film (Catalog No. 400012) and incubate 18 hours at 4°C.

Development of the Plate

1. Reconstitute Ellman’s Reagent immediately before use (20 ml of reagent is sufficient to develop 100 wells):
   100 dtn vial Ellman’s Reagent (96-well kit; Catalog No. 400050): Reconstitute with 20 ml of UltraPure water.
   OR
   250 dtn vial Ellman’s Reagent (480-well kit; Catalog No. 400050): Reconstitute with 50 ml of UltraPure water.

NOTE: Reconstituted Ellman’s Reagent is unstable and should be used the same day it is prepared; protect the Ellman’s Reagent from light when not in use. Extra vials of the reagent have been provided should a plate need to be re-developed or multiple assays run on different days.
2. Empty the wells and rinse five times with Wash Buffer.
3. Add 200 µl of Ellman’s Reagent to each well.
4. Add 5 µl of tracer to the Total Activity wells.
5. Cover the plate with plastic film. Optimum development is obtained by using an orbital shaker equipped with a large, flat cover to allow the plate(s) to develop in the dark. This assay typically develops \((i.e., B_0 \text{ wells } \geq 0.3 \text{ A.U. (blank subtracted)})\) in 90-120 minutes.

**Reading the Plate**
1. Wipe the bottom of the plate with a clean tissue to remove fingerprints, dirt, etc.
2. Remove the plate cover being careful to keep Ellman’s Reagent from splashing on the cover. NOTE: Any loss of Ellman’s Reagent will affect the absorbance readings. If Ellman’s Reagent is present on the cover, use a pipette to transfer the Ellman’s Reagent into the well. If too much Ellman’s Reagent has splashed on the cover to easily redistribute back into the wells, wash the plate three times with wash buffer and repeat the development with fresh Ellman’s Reagent.
3. Read the plate at a wavelength between 405 and 420 nm. The absorbance may be checked periodically until the B_0 wells have reached a minimum of 0.3 A.U. (blank subtracted). The plate should be read when the absorbance of the B_0 wells are in the range of 0.3-1.0 A.U. (blank subtracted). If the absorbance of the wells exceeds 1.5, wash the plate, add fresh Ellman’s Reagent and let it develop again.

**ANALYSIS**

Many plate readers come with data reduction software that plot data automatically. Alternatively a spreadsheet program can be used. The data should be plotted as %B/B_0 versus log concentration using either a 4-parameter logistic or log-logit curve fit. **NOTE:** Cayman has a computer spreadsheet available for data analysis. Please contact Technical Service or visit our website (www.caymanchem.com/analysis/eia) to obtain a free copy of this convenient data analysis tool.

**Calculations**

**Preparation of the Data**

The following procedure is recommended for preparation of the data prior to graphical analysis.

**NOTE:** If the plate reader has not subtracted the absorbance readings of the blank wells from the absorbance readings of the rest of the plate, be sure to do that now.

1. Average the absorbance readings from the NSB wells.
2. Average the absorbance readings from the B_0 wells.
3. Subtract the NSB average from the B_0 average. This is the corrected B_0 or corrected maximum binding.
4. Calculate the %B/B_0 (% Sample or Standard Bound/Maximum Bound) for the remaining wells. To do this, subtract the average NSB absorbance from the S1 absorbance and divide by the corrected B_0 (from Step 3). Multiply by 100 to obtain %B/B_0. Repeat for S2-S8 and all sample wells.

**NOTE:** The total activity (TA) values are not used in the standard curve calculations. Rather, they are used as a diagnostic tool; the corrected B_0 divided by the actual TA (10X measured absorbance) will give the % Bound. This value should closely approximate the % Bound that can be calculated from the Sample Data (see page 24). Erratic absorbance values and a low (or no) % Bound could indicate the presence of organic solvents in the buffer or other technical problems (see page 28 for Troubleshooting).
Plot the Standard Curve

Plot \%B/B_0 for standards S1-S8 versus aldosterone concentration using linear (y) and log (x) axes and fit the data to a 4-parameter logistic equation.

Alternative Plot - The data can also be linearized using a logit transformation. The equation for this conversion is shown below. NOTE: Do not use \%B/B_0 in this calculation.

$$\text{logit} \left( \frac{B}{B_0} \right) = \ln \left( \frac{B}{B_0} / (1 - B/B_0) \right)$$

Plot the data as logit (B/B_0) versus log concentrations and perform a linear regression fit.

Determine the Sample Concentration

Calculate the \%B/B_0 value for each sample. Determine the concentration of each sample using the equation obtained from the standard curve plot, NOTE: Remember to account for any concentration or dilution of the sample prior to the addition to the well. Samples with \%B/B_0 values greater than 80% or less than 20% should be re-assayed as they generally fall out of the linear range of the standard curve. A 20% or greater disparity between the apparent concentration of two different dilutions of the same sample would indicate interference which could be eliminated by purification.

### Hot Spike Method

Recovery Factor = \( \frac{10X \text{ cpm of sample}}{[{}^{3}H]\text{-Aldosterone added to sample}} \)

Aldosterone (pg) in purified sample = \( \left( \frac{\text{Value from EIA (pg/ml)}}{\text{Recovery Factor}} \right) \times \text{reconstituted volume of sample} - \text{added [{}^{3}H]\text{-Aldosterone (pg)}} \)

Aldosterone in sample (pg/ml) = \( \frac{\text{Aldosterone (pg) in purified sample}}{\text{Volume of sample used for purification (ml)}} \)

### Cold Spike Method

The original concentration of the sample and recovery factor can be determined by the following method:

\[ V = \text{EIA determined concentration of the unspiked sample (pg/ml)} \]
\[ S = \text{concentration of the spike (pg/ml)} \]
\[ Y = \text{EIA determined concentration of the spiked sample (pg/ml)} \]

Purification Recovery Factor = \( \left[ \frac{Y - V}{S} \right] \)

Aldosterone (pg) in purified sample = \( V \times \text{Recovery Factor} \times \text{reconstituted volume of sample} \)

Aldosterone in original sample (pg/ml) = \( \frac{\text{Aldosterone (pg) in purified sample}}{\text{Volume of sample used for purification (ml)}} \)
Performance Characteristics

Sample Data

The standard curve presented here is an example of the data typically produced with this kit; however, your results will not be identical to these. You must run a new standard curve. Do not use the data below to determine the values of your samples. Your results could differ substantially.

<table>
<thead>
<tr>
<th>Total Activity</th>
<th>Raw Data</th>
<th>Average</th>
<th>Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.135</td>
<td>1.091</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.679</td>
<td>0.654</td>
<td>0.677</td>
</tr>
<tr>
<td></td>
<td>0.722</td>
<td>0.653</td>
<td>0.677</td>
</tr>
</tbody>
</table>

Raw Data Average Corrected

<table>
<thead>
<tr>
<th>Dose (pg/ml)</th>
<th>Raw Data</th>
<th>Corrected</th>
<th>%B/B₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0.031</td>
<td>0.031</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>0.033</td>
<td>0.033</td>
<td>4.9</td>
</tr>
<tr>
<td>500</td>
<td>0.075</td>
<td>0.075</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>0.071</td>
<td>0.071</td>
<td>10.5</td>
</tr>
<tr>
<td>250</td>
<td>0.128</td>
<td>0.128</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td>0.130</td>
<td>0.130</td>
<td>19.2</td>
</tr>
<tr>
<td>125</td>
<td>0.223</td>
<td>0.223</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td>0.233</td>
<td>0.233</td>
<td>34.4</td>
</tr>
<tr>
<td>62.5</td>
<td>0.351</td>
<td>0.351</td>
<td>51.8</td>
</tr>
<tr>
<td></td>
<td>0.355</td>
<td>0.355</td>
<td>52.4</td>
</tr>
<tr>
<td>31.3</td>
<td>0.487</td>
<td>0.487</td>
<td>71.9</td>
</tr>
<tr>
<td></td>
<td>0.481</td>
<td>0.481</td>
<td>71.0</td>
</tr>
<tr>
<td>15.6</td>
<td>0.570</td>
<td>0.570</td>
<td>84.2</td>
</tr>
<tr>
<td></td>
<td>0.586</td>
<td>0.586</td>
<td>86.6</td>
</tr>
<tr>
<td>7.8</td>
<td>0.660</td>
<td>0.660</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>0.671</td>
<td>0.671</td>
<td>99.1</td>
</tr>
</tbody>
</table>

Table 2. Typical results

Figure 5. Typical standard curve

50% B/B₀ - 65 pg/ml
Detection Limit (80% B/B₀) - 21 pg/ml
Precision:
The intra- and inter-assay CV’s have been determined at multiple points on the standard curve. These data are summarized in the graph on page 25.

<table>
<thead>
<tr>
<th>Dose (pg/ml)</th>
<th>%CV* Intra-assay variation</th>
<th>%CV* Inter-assay variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>7.4</td>
<td>5.9</td>
</tr>
<tr>
<td>500</td>
<td>6.7</td>
<td>5.2</td>
</tr>
<tr>
<td>250</td>
<td>7.3</td>
<td>6.1</td>
</tr>
<tr>
<td>125</td>
<td>6.3</td>
<td>6.0</td>
</tr>
<tr>
<td>62.5</td>
<td>5.5</td>
<td>15.8</td>
</tr>
<tr>
<td>31.3</td>
<td>9.7</td>
<td>15.2</td>
</tr>
<tr>
<td>15.6</td>
<td>14.0</td>
<td>28.7</td>
</tr>
<tr>
<td>7.8</td>
<td>29.7</td>
<td>40.9</td>
</tr>
</tbody>
</table>

Table 3. Intra- and inter-assay variation
*%CV represents the variation in concentration (not absorbance) as determined using a reference standard curve.

Specificity:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cross-reactivity</th>
<th>Compound</th>
<th>Cross-reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldosterone</td>
<td>100%</td>
<td>Estrone</td>
<td>0.02%</td>
</tr>
<tr>
<td>Aldosterone-21-acetate</td>
<td>7.9%</td>
<td>Cortisone</td>
<td>&lt;0.01%</td>
</tr>
<tr>
<td>Corticosterone</td>
<td>1.1%</td>
<td>Cortisol</td>
<td>&lt;0.01%</td>
</tr>
<tr>
<td>Androsterone</td>
<td>0.9%</td>
<td>Estriol</td>
<td>&lt;0.01%</td>
</tr>
<tr>
<td>5α-dihydro Testosterone</td>
<td>0.25%</td>
<td>β-Estradiol</td>
<td>&lt;0.01%</td>
</tr>
<tr>
<td>Androstenedione</td>
<td>0.16%</td>
<td>11-deoxy Cortisol</td>
<td>&lt;0.01%</td>
</tr>
<tr>
<td>Testosterone</td>
<td>0.1%</td>
<td>21-deoxy Cortisol</td>
<td>&lt;0.01%</td>
</tr>
<tr>
<td>11-deoxy Corticosterone</td>
<td>0.09%</td>
<td>Dexamethasone</td>
<td>&lt;0.01%</td>
</tr>
<tr>
<td>DHEA</td>
<td>0.05%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Specificity of the Aldosterone Monoclonal Antibody
## Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Recommended Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erratic values; dispersion of duplicates</td>
<td>A. Trace organic contaminants in the water source</td>
<td>A. Replace activated carbon filter or change source of UltraPure water</td>
</tr>
<tr>
<td></td>
<td>B. Contamination of water with organic solvents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Poor pipetting/technique</td>
<td></td>
</tr>
<tr>
<td>High NSB (&gt;0.035)</td>
<td>A. Poor washing</td>
<td>A. Rewash plate and redevelop</td>
</tr>
<tr>
<td></td>
<td>B. Exposure of NSB wells to specific antibody</td>
<td></td>
</tr>
<tr>
<td>Very low $B_0$</td>
<td>A. Trace organic contaminants in the water source</td>
<td>A. Replace activated carbon filter or change source of UltraPure water</td>
</tr>
<tr>
<td></td>
<td>B. Contamination of water with organic solvents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Plate requires additional development time</td>
<td>B. Return plate to shaker and reread later</td>
</tr>
<tr>
<td>Low sensitivity (shift in dose response curve)</td>
<td>Standard is degraded</td>
<td>Replace standard</td>
</tr>
<tr>
<td>Analyses of two dilutions of a biological sample do not agree (i.e., more than 20% difference)</td>
<td>Interfering substances are present</td>
<td>Purify sample prior to analysis by EIA&lt;sup&gt;1&lt;/sup&gt;</td>
</tr>
<tr>
<td>Only Total Activity (TA) wells develop</td>
<td>Trace organic contaminants in the water source</td>
<td>Replace activated carbon filter or change source of UltraPure water</td>
</tr>
</tbody>
</table>

### References


### Related Products

- Corticosterone EIA Kit - Cat. No. 500651
- Estradiol EIA Kit - Cat. No. 582251
- Estriol EIA Kit - Cat. No. 582281
- Progesterone EIA Kit - Cat. No. 582601
- Testosterone EIA Kit - Cat. No. 582701
- UltraPure Water - Cat. No. 400000
Warranty and Limitation of Remedy

Cayman Chemical Company makes no warranty or guarantee of any kind, whether written or oral, expressed or implied, including without limitation, any warranty of fitness for a particular purpose, suitability and merchantability, which extends beyond the description of the chemicals hereof. Cayman warrants only to the original customer that the material will meet our specifications at the time of delivery. Cayman will carry out its delivery obligations with due care and skill. Thus, in no event will Cayman have any obligation or liability, whether in tort (including negligence) or in contract, for any direct, indirect, incidental or consequential damages, even if Cayman is informed about their possible existence. This limitation of liability does not apply in the case of intentional acts or negligence of Cayman, its directors or its employees.

Buyer’s exclusive remedy and Cayman’s sole liability hereunder shall be limited to a refund of the purchase price, or at Cayman’s option, the replacement, at no cost to Buyer, of all material that does not meet our specifications.

Said refund or replacement is conditioned on Buyer giving written notice to Cayman within thirty (30) days after arrival of the material at its destination. Failure of Buyer to give said notice within thirty (30) days shall constitute a waiver by Buyer of all claims hereunder with respect to said material.

For further details, please refer to our Warranty and Limitation of Remedy located on our website and in our catalog.
This document is copyrighted. All rights are reserved. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from Cayman Chemical Company.

©07/23/2009, Cayman Chemical Company, Ann Arbor, MI, All rights reserved. Printed in U.S.A.