GPR55 Polyclonal Antibody
Item No. 10224

Overview and Properties

Contents: This vial contains 500 μl of peptide-affinity purified antibody.
Synonyms: G Protein-Coupled Receptor 55, LIP1, Lysophosphatidylinositol Receptor 1
Immunogen: Synthetic peptide from an internal region of human GPR55
Species Reactivity: (+) Human, bovine, and mouse
Uniprot No.: Q9Y2T6
Form: Liquid
Storage: -20°C (as supplied)
Stability: As supplied, 1 year from the QC date provided on the Certificate of Analysis, when stored properly
Storage Buffer: TBS, pH7.4, containing 50% glycerol and 0.02% sodium azide
Host: Rabbit
Applications: Flow cytometry (FC), immunofluorescence (IF), and Western blot (WB); the recommended starting dilution for FC and IF is 1:40 and 1:200 for WB. Other applications were not tested, therefore optimal working concentration/dilution should be determined empirically.

Image(s)

Lane 1: Bovine cornea (5 μg)
Lane 2: HEK293 lysate (13 μg)
Lane 3: GPR55-transfected HEK293 lysate (13 μg)

Copyright Cayman Chemical Company, 08/24/2016
Description

GPR55 is a G protein-coupled receptor that has been identified as a novel cannabinoid receptor, although its exact role is still controversial.1,2 Previously central cannabinoid (CB\textsubscript{1}) and peripheral cannabinoid (CB\textsubscript{2}), two widely characterized receptors have been shown to bind THC the active component of cannabis and other endocannabinoids. Mounting evidence suggests that additional receptors play a role in cannabinoid-related signal transduction and GPR55 has been identified as one of them.3 This receptor is widely expressed in the brain, specifically found in large dorsal root ganglion neurons.4 Along with binding THC, it also shows high affinity to anandamide, methanandamide, JWH015, and many other cannabinoid ligands.5,6 The human protein shows 75\% and 78\% overall sequence homology with the rat and mouse proteins, respectively.1 GPR55 is composed of 319 amino acids and has an expected molecular weight of 37 kDa. Post-translational modifications such as glycosylation may retard receptor electrophoretic migration and thereby protein signal may be detected above 37 kDa.

References