HCN2 Cyclic Nucleotide-gated Channel Monoclonal Antibody (Clone S71-37)
Catalog No. 13707

Contents: This vial contains 100 µg of protein G-purified IgG in 100 µl PBS, pH 7.4, containing 50% glycerol and 0.09% sodium azide.
Antigen: Fusion protein amino acids 761-863 (cytoplasmic C-terminus) of rat HCN2
Isotype: IgG1
Host: Mouse, clone S71-37
Cross Reactivity: (+) Human and rat HCN2
Stability: ≥1 year at -20°C
Applications: Western blot (WB), immunoprecipitation (IP), immunohistochemistry (IHC), and immunocytochemistry (ICC). The recommended starting dilution for WB is 1-10 µg/ml and IHC/ICC is 0.1-1.0 µg/ml (HRP detection), and 1-10 µg/ml (IF).

Ion channels are integral membrane proteins that help establish and control the small voltage gradient across the plasma membrane of living cells by allowing the flow of ions down their electrochemical gradient. They are present in the membranes that surround all biological cells and their main function is to regulate the flow of ions across this membrane. Whereas some ion channels permit the passage of ions based on charge, others conduct based on a ionic species, such as sodium or potassium. Furthermore, in some ion channels, the passage is governed by a gate which is controlled by chemical or electrical signals, temperature, or mechanical forces.

There are a few main classifications of gated ion channels. There are voltage-gated ion channels, ligand-gated, other gating systems, and finally those that are classified differently, having more exotic characteristics. The first are voltage-gated ion channels which open and close in response to membrane potential. These are then separated into sodium, calcium, potassium, proton, transient receptor, and cyclic nucleotide-gated channels, each of which is responsible for a unique role. Ligand-gated ion channels are also known as ionotropic receptors and they open in response to specific ligand molecules binding to the extracellular domain of the receptor protein. The other gated classifications include activation and inactivation by second messengers, inward-rectifier potassium channels, calcium-activated potassium channels, two-pore-domain potassium channels, light-gated channels, mechano-sensitive ion channels, and cyclic nucleotide-gated channels. Finally, the other classifications are based on less normal characteristics such as two-pore channels and transient receptor potential channels.

Hyperpolarization-activated cation channels of the HCN gene family contribute to spontaneous rhythmic activity in both the heart and the brain.

References

Related Products
HCN1 Cyclic Nucleotide-gated Ion Channel Monoclonal Antibody (Clone S70-28) - Cat. No. 13705 • HCN3 Cyclic Nucleotide-gated Channel Monoclonal Antibody (Clone S41-28) - Cat. No. 15708 • HCN4 Cyclic Nucleotide-gated Channel Monoclonal Antibody (Clone S114-10) - Cat. No. 13709