

LipidLaunch[™] LNP-102 Uptake Kit (Green Fluorescence)

Item No. 38218

www.caymanchem.com

Customer Service 800.364.9897 Technical Support 888.526.5351 1180 E. Ellsworth Rd · Ann Arbor, MI · USA

TABLE OF CONTENTS

GENERAL INFORMATION	 Materials Supplied Safety Data Precautions If You Have Problems Storage and Stability Materials Needed But Not Supplied
INTRODUCTION	6 Background
PROTOCOL PREPARATION	8 Protocol 10 Reagent Preparation
PROTOCOL	12 Performing the Protocol
RESOURCES	17 References 18 Notes 19 Warranty and Limitation of Remedy
	17 Warrancy and Emiliation of Kenicuy

GENERAL INFORMATION

Materials Supplied

Item Number	Item Name	Quantity/Size	Storage Temperature
33474	SM-102	1 vial/25 mg	-20°C
15100	1,2-Distearoyl-sn-glycero-3-PC	1 vial/10 mg	-20°C
9003100	Cholesterol	1 vial/25 mg	-20°C
33945	DMG-PEG(2000)	1 vial/5 mg	-20°C
24618	BODIPY 480/508-Cholesterol	1 vial/1 mg	-20°C

If any of the items listed above are damaged or missing, please contact our Customer Service department at (800) 364-9897 or (734) 971-3335. We cannot accept any returns without prior authorization.

WARNING: THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

Safety Data

This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user <u>must</u> review the <u>complete</u> Safety Data Sheet, which has been sent *via* email to your institution.

Precautions

Please read these instructions carefully before beginning this assay.

If You Have Problems

Technical Service Contact Information

Phone: 888-526-5351 (USA and Canada only) or 734-975-3888

Email: techserv@caymanchem.com

In order for our staff to assist you quickly and efficiently, please be ready to supply the lot number of the kit (found on the outside of the box).

Storage and Stability

This kit will perform as specified if stored as directed in the Materials Supplied section (see page 3) and used before the expiration date indicated on the outside of the box.

Materials Needed But Not Supplied

- 1. Absolute ethanol
- 2. Aqueous acidic buffer, such as 50 mM sodium acetate, pH 4.0-5.0
- 3. Nucleic acid payload NOTE: GFP mRNA is incompatible with this kit due to fluorescence of BODIPY.
- 4. Commercial microfluidic device or pipettes for hand-mixing
- 5. Neutral buffer, such as PBS, pH 7.4

INTRODUCTION

Background

Lipid nanoparticles (LNPs) are a subset of lipid-based drug delivery (LBDD) systems that utilize ionizable cationic lipids, such as SM-102, for the delivery of nucleic acid (*e.g.* siRNA, mRNA, cyclic dinucleotide) payloads to cells.¹ They consist of a lipid shell composed of structural phospholipids, cholesterol, and PEGylated lipids that surround an internal aqueous core, where the ionizable cationic lipids organize into inverted micelles around the encapsulated nucleic acids.² lonizable cationic lipids are near-neutral at physiological pH and cationic in acidic environments (apparent pK_a for SM-102 = 6.7), a property that promotes the encapsulation of negatively charged nucleic acids during LNP preparation and facilitates intracellular delivery after cellular uptake.^{1,3} LNPs are internalized into cells *via* endocytosis.⁴ SM-102 becomes protonated and positively charged in the acidic environment of the endosomal compartment, promoting LNP endosomal escape and intracellular delivery.⁵

Cayman's LipidLaunch[™] LNP-102 Uptake Kit (Green Fluorescence) is intended to serve as a starting point for laboratories to explore the uptake of SM-102based LNPs (LNP-102) by their target cell type without the need for specialized equipment. Optimal preparation conditions for the encapsulation of nucleic acids with LNPs must be determined by the end user. Adjustment of the following parameters may facilitate this process:

- Lipid molar ratio
- Lipid:nucleic acid (w:w) ratio
- Ionizable cationic lipid nitrogen:nucleotide phosphate (N:P) molar ratio
- Aqueous buffer: identity and ionic strength
- Particle size: extrusion size or microfluidic operating parameters, as applicable
- LNP preparation method

Lipids in Ethanol

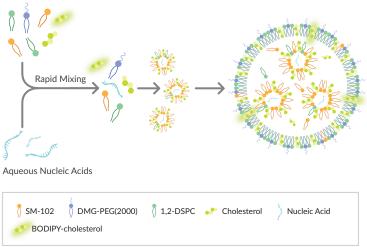
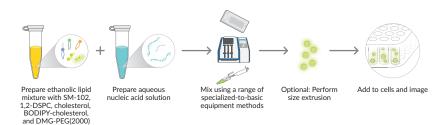



Figure 1. Schematic of nucleic acid-containing LNP formation with the LipidLaunch[™] LNP-102 Uptake Kit (Green Fluorescence)

PROTOCOL PREPARATION

Protocol

An example for preparing nucleic acid-containing LNPs with an ethanolic lipid mixture containing SM-102 (Item No. 33474), 1,2-distearoyl-*sn*-glycero-3-PC (1,2-DSPC; Item No. 15100), cholesterol (Item No. 9003100), BODIPY-cholesterol (Item No. 24618), and DMG-PEG(2000) (Item No. 33945) at lipid molar ratios of 50:10:36.5:2:1.5, respectively, is shown in Figure 2 (see page 9). These molar ratios are derived from those used in mRNA-based vaccines. This example is shown with a final lipid:nucleic acid (w:w) ratio of 26:1 and an aqueous:ethanolic ratio of 3:1. The end user may scale volumes and adjust lipid molar and lipid:nucleic acid ratios as desired. It is possible to produce multiple small batches of LNPs using the parameters in this example and the reagents provided in the kit.

Figure 2. LipidLaunch[™] LNP-102 Uptake Kit (Green Fluorescence) workflow

Reagent Preparation

1. Ethanolic Lipid Mixture

Prepare individual lipid stock solutions of the four lipids supplied as crystalline solids in absolute ethanol. SM-102 is ready to use as supplied. Bring all stock solutions to room temperature prior to use and ensure they are well-dissolved. Heating to 37°C with intermittent vortexing may be required for dissolution. Transfer the appropriate volume of each lipid mixture component to a single tube as listed in the table below to prepare the ethanolic lipid mixture. Mix by pipetting several times. Individual lipid solutions and lipid mixes will be stable stored at -20°C for at least a week. Gentle heating may be required for re-solublization.

Lipid Mixture Component	Stock Solutions		Working Mixture		
component	mg/ml	MW	Molar Ratio	mg	Required Volume
SM-102	100	710.2	50.0	3.54	35 μl
1,2-DSPC	25	790.2	10.0	0.79	32 μl
Cholesterol	5	386.7	36.0	1.39	278 μl
DMG-PEG(2000)	1	2,526	1.5	0.38	376 μl
BODIPY-cholesterol	0.6	576.6	2.5	0.14	240 μl
Absolute ethanol					39 μl
Total				6.24	1 ml

Table 1. Preparation of ethanolic lipid mixture

2. Aqueous Nucleic Acid Solution

In a separate tube, bring nucleic acid payload to a concentration of approximately $80 \ \mu g/ml$ in 3 ml of 50 mM sodium acetate, pH 4.0, prepared under RNase-free conditions. Optimal nucleic acid concentration and buffer should be determined empirically for each payload.

PROTOCOL

Performing the Protocol

Several methods are suitable for laboratory-scale, small-volume LNP production. Two of these methods are described briefly below, though these are adaptable throughout a range of basic to specialized equipment. The procedures are performed at room temperature unless otherwise indicated.

1. Mixing

Commercial Microfluidic Device Mixing: Mix the ethanolic lipid mixture with the aqueous nucleic acid solution using a microfluidic device or chip with a staggered herringbone-, T-, or Y-channel design. Flow rate ratios (FRR) for the mixtures described here are 3:1 (aqueous:ethanolic), and total flow rates (TFR) can vary, usually between 10 and 25 ml/min.

Hand Mixing: Hand mix the ethanolic lipid mixture with the aqueous nucleic acid solution *via* pipette by rapidly transferring the ethanolic lipid mixture into the aqueous nucleic acid solution. Volume ratios for the mixtures described here are 3:1 (aqueous:ethanolic). Mix by repeated pipetting for 15 seconds or vortexing briefly. Leave undisturbed for 10 minutes.

2. Final Preparation

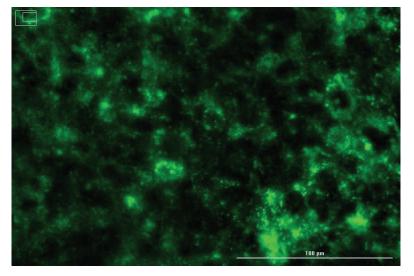
LNPs are delicate structures and care should be taken to avoid shaking or pipetting LNP solutions too vigorously. Frequently, LNP solutions are immediately diluted into a neutral buffer (*e.g.* equal volume PBS, pH 7.4) to minimize potential damage to lipids in the low-pH environment. Subsequent preparation steps described below depend on the final application.

- a. Dialyze LNPs in neutral buffer (*e.g.* PBS, pH 7.4) against 1,000 volumes of buffer using the appropriate molecular weight cut-off (MWCO) membrane overnight (generally, 30 kDa MWCO is appropriate).
- b. If desired, LNP solutions may be concentrated by centrifugation using the appropriate MWCO filter.
- c. LNP solutions can be filter-sterilized with a 0.22 μm filter if required for end use.
- d. The LNP solution will be stable at 4°C for one week. The LNP solution will be stable at 4°C for one week. If longer storage is required, stabilizing reagents, such as 8-12% sucrose, may be added for storage at -80°C. Stability testing should be conducted for each LNP formulation method to optimize storage conditions.

3. Characterization and Validation

A variety of techniques are available to characterize LNPs prior to use. Contact Cayman Services for *in vitro* testing of your LNPs.

Attribute	Assay(s)	
Particle size and distribution	Dynamic light scattering (DLS)	
Zeta potential	Laser doppler electrophoresis	
Lipid quantification and integrity	RP-HPLC, SE-HPLC, IP-HPLC	
LNP morphology	Microscopy (cryo TEM, ESEM, AFM)	
LNP uptake	Cell-based imaging or fluorescence detection	
Translation or knockdown analyses	Cell-based reporter assays, Western blotting	


Table 2. LNP attributes and corresponding assays. Adapted from Schoenmaker, L., et $al.^6$

Attribute	Typical Value
Particle size	50-150 nm
Polydispersity index (PDI)	<0.2

Table 3. Typical particle characteristics of LNPs made with the LipidLaunch[™] LNP-102 Uptake Kit (Green Fluorescence)

4. Uptake analysis

BODIPY-cholesterol incorporated into the LNPs will fluoresce under the same conditions as GFP (excitation 480 nm, emission 508 nm). Dilute prepared LNPs in medium containing serum about 1:100 to 1:500, then add to cells. After 24-48 hours, exchange medium for PBS and image or capture total fluorescence using a plate reader.

Figure 3. LNP-102 uptake in hepatocytes. LNP-102 was formulated in a Nunchuck device from Unchained Labs, using a FRR of 3 and a TFR of 15 ml/min. After dialysis against PBS, LNPs were diluted 1:200 in cell culture media and added to Huh7 hepatocytes for 48 hours. Imaging was carried out in PBS on a BioTek Cytation 5 imaging plate reader at 20X with a GFP LED/filter cube.

RESOURCES

References

- 1. Mitchell, M.J., Billingsley, M.M., Haley, R.M., *et al.* Engineering precision nanoparticles for drug delivery. *Nat. Rev. Drug Discov.* **20(2)**, 101-124 (2021).
- 2. Guevara, M.L., Persano, F., and Persano, S. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. *Front. Chem.* **8**, 589959 (2020).
- 3. Buschmann, M.D., Carrasco, M.J., Alishetty, S., *et al.* Nanomaterial delivery systems for mRNA vaccines. *Vaccines* (*Basel*) **9(1**), 65 (2021).
- 4. Degors, I.M.S., Wang, C., Rehman, Z.U., *et al.* Carriers break barriers in drug delivery: Endocytosis and endosomal escape of gene delivery vectors. *Acc. Chem. Res.* **52(7)**, 1750-1760 (2019).
- 5. Carrasco, M.J., Alishetta, S., Alameh, M.-G., *et al.* Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. *Commun. Biol.* **4(1)**, 956 (2021).
- 6. Schoenmaker, L., Witzigmann, D., Kulkarni, J.A., *et al.* mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. *Int. J. Pharm.* **601**, 120586 (2021).

17

Warranty and Limitation of Remedy

Buyer agrees to purchase the material subject to Cayman's Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website.

This document is copyrighted. All rights are reserved. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from Cayman Chemical Company.

©02/28/2024, Cayman Chemical Company, Ann Arbor, MI, All rights reserved. Printed in U.S.A.