Corticosterone EIA Kit
Catalog No. 500651 (Strip Plate)
Catalog No. 10005590 (Solid Plate)
TABLE OF CONTENTS

GENERAL INFORMATION 3 Materials Supplied
4 Precautions
4 If You Have Problems
5 Storage and Stability
5 Materials Needed but Not Supplied

INTRODUCTION 6 Background
6 About This Assay
7 Description of ACE™ Competitive EIAs
8 Biochemistry of Acetylcholinesterase
10 Definition of Key Terms

PRE-ASSAY PREPARATION 11 Buffer Preparation
12 Sample Preparation
13 Sample Purification

ASSAY PROTOCOL 18 Preparation of Assay-Specific Reagents
20 Plate Set Up
21 Performing the Assay

ANALYSIS 24 Calculations
27 Performance Characteristics

RESOURCES 31 Troubleshooting
32 References
33 Related Products
34 Warranty and Limitation of Remedy
35 Plate Template
36 Notes

GENERAL INFORMATION

Materials Supplied

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Item</th>
<th>96 wells Quantity/Size</th>
<th>480 wells Quantity/Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>400652</td>
<td>Corticosterone EIA Antiserum</td>
<td>1 vial/100 dtn</td>
<td>1 vial/500 dtn</td>
</tr>
<tr>
<td>400650</td>
<td>Corticosterone AChE Tracer</td>
<td>1 vial/100 dtn</td>
<td>1 vial/500 dtn</td>
</tr>
<tr>
<td>400654</td>
<td>Corticosterone EIA Standard</td>
<td>1 vial</td>
<td>1 vial</td>
</tr>
<tr>
<td>400060</td>
<td>EIA Buffer Concentrate (10X)</td>
<td>2 vials/10 ml</td>
<td>4 vials/10 ml</td>
</tr>
<tr>
<td>400062</td>
<td>Wash Buffer Concentrate (400X)</td>
<td>1 vial/5 ml</td>
<td>1 vial/12.5 ml</td>
</tr>
<tr>
<td>400035</td>
<td>Tween 20</td>
<td>1 vial/3 ml</td>
<td>1 vial/3 ml</td>
</tr>
<tr>
<td>400004</td>
<td>Mouse Anti-Rabbit IgG Coated Plate</td>
<td>1 plate</td>
<td>5 plates</td>
</tr>
<tr>
<td>400012</td>
<td>96-Well Cover Sheet</td>
<td>1 cover</td>
<td>5 covers</td>
</tr>
<tr>
<td>400050</td>
<td>Ellman’s Reagent</td>
<td>3 vials/100 dtn</td>
<td>6 vials/250 dtn</td>
</tr>
</tbody>
</table>

If any of the items listed above are damaged or missing, please contact our Customer Service department at (800) 364-9897 or (734) 975-3999. We cannot accept any returns without prior authorization.
WARNING: This product is for laboratory research use only: not for administration to humans. Not for human or veterinary diagnostic or therapeutic use.

Precautions

Please read these instructions carefully before beginning this assay.

The reagents in this kit have been tested and formulated to work exclusively with Cayman Chemical’s ACE™ EIA Kits. This kit may not perform as described if any reagent or procedure is replaced or modified.

For research use only. Not for human or diagnostic use.

If You Have Problems

Technical Service Contact Information

Phone: 888-526-5351 (USA and Canada only) or 734-975-3888
Fax: 734-971-3641
E-Mail: techserv@caymanchem.com
Hours: M-F 8:00 AM to 5:30 PM EST

In order for our staff to assist you quickly and efficiently, please be ready to supply the lot number of the kit (found on the outside of the box).

Storage and Stability

This kit will perform as specified if stored as directed at -20°C and used before the expiration date indicated on the outside of the box.

Materials Needed But Not Supplied

1. A plate reader capable of measuring absorbance between 405-420 nm.
2. Adjustable pipettes and a repeat pipettor.
3. A source of ‘UltraPure’ water. Water used to prepare all EIA reagents and buffers must be deionized and free of trace organic contaminants (‘UltraPure’). Use activated carbon filter cartridges or other organic scavengers. Glass distilled water (even if double distilled), HPLC-grade water, and sterile water (for injections) are not adequate for EIA. **NOTE: UltraPure water is available for purchase from Cayman (Catalog No. 400000).**
4. Materials used for Sample Purification (see page 13).
Background

Corticosterone is a glucocorticoid produced by the adrenal cortex in response to ACTH (corticotropic hormone), and is the precursor to aldosterone. The production of glucocorticoids is increased by stress; therefore, corticosterone can be used as a biomarker of stress.\(^1\) Biologists often measure corticosterone in fecal material of the species they are studying.\(^1,2\) This non-invasive sample collection procedure has the advantage of not itself causing stress, and thereby increasing corticosterone levels, a common problem when samples for measurement of corticosterone are collected by more invasive means.\(^1\) Plasma corticosterone levels have a circadian variation, and corticosterone may be important in the regulation of the sleep-wake cycle.\(^2,3\) The concentration of corticosterone in human plasma is approximately 0.9-3.9 ng/ml in females and 3.2-7.6 ng/ml in males.\(^4\)

About This Assay

Cayman’s Corticosterone EIA Kit is a competitive assay that can be used for quantification of corticosterone in plasma and fecal matter samples. The EIA typically displays an IC\(_{50}\) (50% B/B\(_0\)) of approximately 230 pg/ml and a detection limit (80% B/B\(_0\)) of approximately 40 pg/ml.

Description of ACE\(^{TM}\) Competitive EIAs\(^5,6\)

This assay is based on the competition between corticosterone and a corticosterone-acetylcholinesterase (AChE) conjugate (Corticosterone Tracer) for a limited number of corticosterone-specific rabbit antiserum binding sites. Because the concentration of the Corticosterone Tracer is held constant while the concentration of corticosterone varies, the amount of Corticosterone Tracer that is able to bind to the rabbit antiserum will be inversely proportional to the concentration of corticosterone in the well. This rabbit antiserum-corticosterone (either free or tracer) complex binds to the mouse monoclonal anti-rabbit IgG that has been previously attached to the well. The plate is washed to remove any unbound reagents and then Ellman’s Reagent (which contains the substrate to AChE) is added to the well. The product of this enzymatic reaction has a distinct yellow color and absorbs strongly at 412 nm. The intensity of this color, determined spectrophotometrically, is proportional to the amount of Corticosterone Tracer bound to the well, which is inversely proportional to the amount of free corticosterone present in the well during the incubation; or

\[
\text{Absorbance} \propto \frac{\text{[Bound Corticosterone Tracer]}}{[\text{Corticosterone}]} \propto \frac{1}{[\text{Corticosterone}]}
\]

A schematic of this process is shown in Figure 1, below.

Figure 1. Schematic of the ACE\(^{TM}\) EIA

- Plates are pre-coated with mouse anti-rabbit IgG and blocked with a proprietary formulation of proteins.
- 1. Incubate with tracer, antiserum, and either standard or sample.
- 2. Wash to remove all unbound reagents.
- 3. Develop the well with Ellman’s Reagent.
- \(\gamma\) = Mouse Anti-Rabbit IgG
- \(\bullet\) = Blocking proteins
- \(\varphi\) = Acetylcholinesterase linked to Corticosterone (Tracer)
- \(\Delta\) = Specific antiserum to Corticosterone
- \(\Box\) = Free Corticosterone
Biochemistry of Acetylcholinesterase

The electric organ of the electric eel, *Electrophorus electricus*, contains an avid acetylcholinesterase (AChE) capable of massive catalytic turnover during the generation of its electrochemical discharges. The electric eel AChE has a clover leaf-shaped tertiary structure consisting of a triad of tetramers attached to a collagen-like structural fibril. This stable enzyme is capable of high turnover (64,000 s\(^{-1}\)) for the hydrolysis of acetylthiocholine.

A molecule of the analyte covalently attached to a molecule of AChE serves as the tracer in ACE” enzyme immunoassays. Quantification of the tracer is achieved by measuring its AChE activity with Ellman’s Reagent. This reagent consists of acetylthiocholine and 5,5’-dithio-bis-(2-nitrobenzoic acid). Hydrolysis of acetylthiocholine by AChE produces thiocholine (see Figure 2, on page 9). The non-enzymatic reaction of thiocholine with 5,5’-dithio-bis-(2-nitrobenzoic acid) produces 5-thio-2-nitrobenzoic acid, which has a strong absorbance at 412 nm (ε = 13,600).

AChE has several advantages over other enzymes commonly used for enzyme immunoassays. Unlike horseradish peroxidase, AChE does not self-inactivate during turnover. This property of AChE also allows re-development of the assay if it is accidentally splashed or spilled. In addition, the enzyme is highly stable under the assay conditions, has a wide pH range (pH 5-10), and is not inhibited by common buffer salts or preservatives. Since AChE is stable during the development step, it is unnecessary to use a ‘stop’ reagent, and the plate may be read whenever it is convenient.

Figure 2. Reaction catalyzed by acetylcholinesterase
Definition of Key Terms

Blank: background absorbance caused by Ellman’s Reagent. The blank absorbance should be subtracted from the absorbance readings of all the other wells.

Total Activity: total enzymatic activity of the AChE-linked tracer. This is analogous to the specific activity of a radioactive tracer.

NSB (Non-Specific Binding): non-immunological binding of the tracer to the well. Even in the absence of specific antibody a very small amount of tracer still binds to the well; the NSB is a measure of this low binding.

B₀ (Maximum Binding): maximum amount of the tracer that the antibody can bind in the absence of free analyte.

%B/B₀ (%Bound/Maximum Bound): ratio of the absorbance of a particular sample or standard well to that of the maximum binding (B₀) well.

Standard Curve: a plot of the %B/B₀ values versus concentration of a series of wells containing various known amounts of analyte.

Dtn: determination, where one dtn is the amount of reagent used per well.

NOTE: Water used to prepare all EIA reagents and buffers must be deionized and free of trace organic contaminants (‘UltraPure’). Use activated carbon filter cartridges or other organic scavengers. Glass distilled water (even if double distilled), HPLC-grade water, and sterile water (for injections) are not adequate for EIA. UltraPure water may be purchased from Cayman (Catalog No. 400000).

Buffer Preparation

Store all buffers at 4°C; they will be stable for about two months.

1. EIA Buffer Preparation

Dilute the contents of one vial of EIA Buffer Concentrate (10X) (Catalog No. 400060) with 90 ml of UltraPure water. Be certain to rinse the vial to remove any salts that may have precipitated. **NOTE:** It is normal for the concentrated buffer to contain crystalline salts after thawing. These will completely dissolve upon dilution with water.

2. Wash Buffer Preparation

- **5 ml vial Wash Buffer Concentrate (400X) (96-well kit; Catalog No. 400062):** Dilute to a total volume of 2 liters with UltraPure water and add 1 ml of Tween 20 (Catalog No. 400035).

 OR

- **12.5 ml vial Wash Buffer Concentrate (400X) (480-well kit; Catalog No. 400062):** Dilute to a total volume of 5 liters with UltraPure water and add 2.5 ml of Tween 20 (Catalog No. 400035).

Smaller volumes of Wash Buffer can be prepared by diluting the Wash Buffer Concentrate 1:400 and adding Tween 20 (0.5 ml/liter of Wash Buffer).

NOTE: Tween 20 is a viscous liquid and cannot be measured by a regular pipette. A positive displacement pipette or a syringe should be used to deliver small quantities accurately.
Sample Preparation

This assay has been validated for plasma and fecal matter samples (see Figure 3, on page 16). Proper sample storage and preparation are essential for consistent and accurate results. Please read this section thoroughly before beginning the assay.

General Precautions

- All samples must be free of organic solvents prior to assay.
- Samples should be assayed immediately after collection; samples that cannot be assayed immediately should be stored at -80°C.
- Samples of rabbit origin may contain antibodies which interfere with the assay by binding to the mouse anti-rabbit IgG plate. We recommend that all rabbit samples be purified prior to use in this assay.

Plasma

Collect blood in vacutainers containing heparin or sodium citrate. To obtain plasma, spin samples at 1,000 x g for 15 minutes. Samples should be assayed immediately after collection; samples that cannot be assayed immediately should be stored at -80°C. Process following the general Hot Spike Extraction or Cold Spike Extraction methods shown on page 14.

Feces

Fecal samples should be frozen immediately after collection. In order to meet USDA requirements for receipt of international shipments of fecal material, it may be necessary to treat the samples with heat or chemicals to kill potential pathogens and prevent disease transmission. Millspaugh, et al., have demonstrated that treatment of deer and elk fecal samples with 2% acetic acid does not alter the measurement of glucocorticoids in these samples.³

Sample Purification

In general, urine and cell culture supernatant samples may be diluted with EIA Buffer and added directly to the assay well. Plasma, serum, whole blood, and fecal material, as well as other heterogeneous mixtures such as lavage fluids and aspirates often contain contaminants which can interfere in the assay. It is best to check for interference before embarking on a large number of sample measurements. To test for interference, dilute one or two test samples to obtain at least two different dilutions of each sample between approximately 25 and 2,000 pg/ml (i.e., between -20-80% B/B₀). If the two different dilutions of the sample show good correlation (differ by 20% or less) in the final calculated corticosterone concentration, purification is not required. If you do not see good correlation of the different dilutions, purification is advised. The Extraction Protocol, on page 14, is one such method.

Determination of Recovery

Determination of percent recovery is recommended when any sample purification is performed. Detailed below are two methods that can be employed to monitor the recovery. If the Hot Spike method is used, 10,000 cpm of tritium-labeled corticosterone is added directly to the sample and 10% is removed for scintillation counting after purification. If the Cold Spike method is used, the sample must be split prior to purification and an appropriate amount of corticosterone added to one aliquot. The spiked sample is then assayed via EIA alongside the unspiked sample. Calculations for each method are found in the Analysis section on page 24.
Purification Protocol

Materials Needed
1. Tritium-labeled corticosterone to use as a Hot Spike or unlabeled Corticosterone Standard to use as a Cold Spike to allow determination of extraction efficiency.
2. Methylene chloride

Plasma Sample Extraction

NOTE: We do not recommend the use of plastic vials or caps for this procedure. The methylene chloride may extract interfering compounds from the plastic.

1. Add methylene chloride (approximately four times the sample volume) to each tube. Vortex to mix thoroughly. Allow the layers to separate. Transfer the methylene chloride (lower) layer into a clean test tube using a transfer pipette. Repeat this step three times.

NOTE: If it is necessary to stop during this purification, samples may be stored in the methylene chloride solution at -20°C or -80°C.

2. Evaporate the methylene chloride by heating to 30°C under a gentle stream of nitrogen.

3. Dissolve the extract in 0.5 ml of EIA Buffer, use this for EIA analysis.

Hot Spike

1. Aliquot a known amount of each sample into a clean test tube (500 µl is recommended). If your samples need to be concentrated, a larger volume should be used (e.g., a 5 ml sample will be concentrated by a factor of 10, a 10 ml sample will be concentrated by a factor of 20, etc.).

2. Add 10,000 cpm of tritium-labeled corticosterone ([³H]-corticosterone). Use a high specific activity tracer to minimize the amount of radioactive corticosterone as the EIA will be able to detect the added corticosterone.

Cold Spike

1. Aliquot a known amount of each sample into each of two tubes. Label the first tube ‘sample #’ and the second ‘sample # + spike’. If your samples need to be concentrated, a larger volume should be used (e.g., a 5 ml sample will be concentrated by a factor of 10, a 10 ml sample will be concentrated by a factor of 20, etc.).

2. Add a cold spike of corticosterone (5-10 ng/ml) to the ‘sample + spike’ tubes. Follow the procedure below for both spiked and unspiked samples.

Proceed to step 3 on next page
PRE-ASSAY PREPARATION

Fecal Sample Extraction

1. Put approximately 10 ml of each sample into 20 ml plastic vials. Lyophilize.
2. Sift lyophilized samples through a stainless steel mesh to remove large particles. Mix each sample thoroughly to ensure homogeneity.

Hot Spike

3. Place 0.2 g of each sample into clean test tubes.
4. Add 2 ml of 90% methanol and 10,000 cpm of $[^3]H$-corticosterone to each sample.

Cold Spike

3. Place 0.2 g of each sample into each of two tubes. Label the first tube ‘sample #’ and the second ‘sample # + spike’.
4. Add a cold spike of 5-10 ng of corticosterone to the ‘sample + spike’ tubes. Add 2 ml of 90% methanol to each tube. Follow the procedure below for both spiked and unspiked sample.

5. Vortex at high speed for 30 minutes.
6. Centrifuge samples at 2,500 rpm for 20 minutes.
7. Transfer each supernatant to a clean test tube.
8. Evaporate under a gentle stream of nitrogen.
9. Dissolve the extract in 500 µl EIA Buffer. The sample is now ready for use in the EIA.

Hot Spike (continued)

10. Use 50 µl of the reconstituted sample for scintillation counting.
Preparation of Assay-Specific Reagents

Corticosterone EIA Standard

Equilibrate a pipette tip in ethanol by repeatedly filling and expelling the tip with ethanol several times. Using the equilibrated pipette tip, transfer 100 µl of the Corticosterone EIA Standard (Catalog No. 400654) into a clean test tube, then dilute with 900 µl UltraPure water. The concentration of this solution (the bulk standard) will be 100 ng/ml. Store this solution at 4°C; it will be stable for at least six weeks.

NOTE: If assaying culture medium samples that have not been diluted with EIA Buffer, culture medium should be used in place of EIA Buffer for dilution of the standard curve.

To prepare the standard for use in EIA: Obtain eight clean test tubes and number them #1 through #8. Aliquot 900 µl EIA Buffer to tube #1 and 750 µl EIA Buffer to tubes #2-8. Transfer 100 µl of the bulk standard (100 ng/ml) to tube #1 and mix thoroughly. Serially dilute the standard by removing 500 µl from tube #1 and placing it into tube #2; mix thoroughly. Next, remove 500 µl from tube #2 and place it into tube #3; mix thoroughly. Repeat this process for tubes #4-8. These diluted standards should not be stored for more than 24 hours.

Corticosterone AChE Tracer

Reconstitute the Corticosterone AChE Tracer as follows:

100 dtn Corticosterone AChE Tracer (96-well kit; Catalog No. 400650):
Reconstitute with 6 ml EIA Buffer.

OR

500 dtn Corticosterone AChE Tracer (480-well kit; Catalog No. 400650):
Reconstitute with 30 ml EIA Buffer.

Store the reconstituted Corticosterone AChE Tracer at 4°C (do not freeze!) and use within four weeks. A 20% surplus of tracer has been included to account for any incidental losses.

Corticosterone EIA Antiserum

Reconstitute the Corticosterone EIA Antiserum as follows:

100 dtn Corticosterone EIA Antiserum (96-well kit; Catalog No. 400652):
Reconstitute with 6 ml EIA Buffer.

OR

500 dtn Corticosterone EIA Antiserum (480-well kit; Catalog No. 400652):
Reconstitute with 30 ml EIA Buffer.

Store the reconstituted Corticosterone EIA Antiserum at 4°C. It will be stable for at least four weeks. A 20% surplus of antiserum has been included to account for any incidental losses.

Figure 4. Preparation of the corticosterone standards
Plate Set Up

The 96-well plate(s) included with this kit is supplied ready to use. It is not necessary to rinse the plate(s) prior to adding the reagents. NOTE: If you do not need to use all the strips at once, place the unused strips back in the plate packet and store at 4°C. Be sure the packet is sealed with the desiccant inside.

Each plate or set of strips must contain a minimum of two blanks (Blk), two non-specific binding wells (NSB), two maximum binding wells (BO), and an eight point standard curve run in duplicate. NOTE: Each assay must contain this minimum configuration in order to ensure accurate and reproducible results. Each sample should be assayed at two dilutions and each dilution should be assayed in duplicate. For statistical purposes, we recommend assaying samples in triplicate.

A suggested plate format is shown in Figure 5, below. The user may vary the location and type of wells present as necessary for each particular experiment. The plate format provided below has been designed to allow for easy data analysis using a convenient spreadsheet offered by Cayman (see page 24, for more details). We suggest you record the contents of each well on the template sheet provided (see page 35).

Performing the Assay

Pipetting Hints

- Use different tips to pipette each reagent.
- Before pipetting each reagent, equilibrate the pipette tip in that reagent (i.e., slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.

Addition of the Reagents

1. EIA Buffer
 Add 100 µl EIA Buffer to Non-Specific Binding (NSB) wells. Add 50 µl EIA Buffer to Maximum Binding (BO) wells. If culture medium was used to dilute the standard curve, substitute 50 µl of culture medium for EIA Buffer in the NSB and BO wells (i.e., add 50 µl culture medium to NSB and B0 wells and 50 µl EIA Buffer to NSB wells).

2. Corticosterone EIA Standard
 Add 50 µl from tube #8 to both of the lowest standard wells (S8). Add 50 µl from tube #7 to each of the next two standard wells (S7). Continue with this procedure until all the standards are aliquoted. The same pipette tip should be used to aliquot all the standards. Before pipetting each standard, be sure to equilibrate the pipette tip in that standard.

3. Samples
 Add 50 µl of sample per well. Each sample should be assayed at a minimum of two dilutions. Each dilution should be assayed in duplicate (triplicate recommended).

4. Corticosterone AChE Tracer
 Add 50 µl to each well except the Total Activity (TA) and the Blank (Blk) wells.

5. Corticosterone EIA Antiserum
 Add 50 µl to each well except the Total Activity (TA), the Non-Specific Binding (NSB), and the Blank (Blk) wells.

Figure 5. Sample plate format
Well	**EIA Buffer**	**Standard/ Sample**	**Tracer**	**Antibody**
Blk | - | - | - | -
TA | - | - | 5 µl (at devl. step) | -
NSB | 100 µl | - | 50 µl | -
B₀ | 50 µl | - | 50 µl | 50 µl
Std/Sample | - | 50 µl | 50 µl | 50 µl

Table 1. Pipetting summary

Incubation of the Plate
Cover each plate with plastic film (Catalog No. 400012) and incubate for two hours at room temperature on an orbital shaker.

Development of the Plate
1. Reconstitute Ellman’s Reagent immediately before use (20 ml of reagent is sufficient to develop 100 wells):
 1. **100 dtn vial Ellman’s Reagent (96-well kit; Catalog No. 400050):** Reconstitute with 20 ml of UltraPure water.

 OR

 2. **250 dtn vial Ellman’s Reagent (480-well kit; Catalog No. 400050):** Reconstitute with 50 ml of UltraPure water.

 NOTE: Reconstituted Ellman’s Reagent is unstable and should be used the same day it is prepared; protect the Ellman’s Reagent from light when not in use. Extra vials of the reagent have been provided should a plate need to be re-developed or multiple assays be run on different days.

2. Empty the wells and rinse five times with Wash Buffer.
3. Add 200 µl of Ellman’s Reagent to each well.
4. Add 5 µl of tracer to the Total Activity wells.
5. Cover the plate with plastic film. Optimum development is obtained by using an orbital shaker equipped with a large, flat cover to allow the plate(s) to develop in the dark. This assay typically develops (i.e., B₀ wells ≥0.3 A.U. (blank subtracted)) in 60-90 minutes.

Reading the Plate
1. Wipe the bottom of the plate with a clean tissue to remove fingerprints, dirt, etc.
2. Remove the plate cover being careful to keep Ellman’s Reagent from splashing on the cover. *NOTE: Any loss of Ellman’s Reagent will affect the absorbance readings. If Ellman’s Reagent is present on the cover, use a pipette to transfer the Ellman’s Reagent into the well. If too much Ellman’s Reagent has splashed on the cover to easily redistribute back into the wells, wash the plate three times with wash buffer and repeat the development with fresh Ellman’s Reagent.*
3. Read the plate at a wavelength between 405 and 420 nm (usually 412 nm). The absorbance may be checked periodically until the B₀ wells have reached a minimum of 0.3 A.U. (blank subtracted). The plate should be read when the absorbance of the B₀ wells are in the range of 0.3-1.0 A.U. (blank subtracted). If the absorbance of the wells exceeds 1.5, wash the plate, add fresh Ellman’s Reagent and let it develop again.
Many plate readers come with data reduction software that plot data automatically. Alternatively a spreadsheet program can be used. The data should be plotted as %B/B₀ versus log concentration using a 4-parameter logistic. **NOTE:** Cayman has a computer spreadsheet available for data analysis. Please contact Technical Service or visit our website (www.caymanchem.com/analysis/eia) to obtain a free copy of this convenient data analysis tool.

Calculations

Preparation of the Data

The following procedure is recommended for preparation of the data prior to graphical analysis.

NOTE: If the plate reader has not subtracted the absorbance readings of the blank wells from the absorbance readings of the rest of the plate, be sure to do that now.

1. Average the absorbance readings from the NSB wells.
2. Average the absorbance readings from the B₀ wells.
3. Subtract the NSB average from the B₀ average. This is the corrected B₀ or corrected maximum binding.
4. Calculate the %B/B₀ (% Sample or Standard Bound/Maximum Bound) for the remaining wells. To do this, subtract the average NSB absorbance from the S₁ absorbance and divide by the corrected B₀ (from Step 3). Multiply by 100 to obtain %B/B₀. Repeat for S₂-S₈ and all sample wells.

NOTE: The total activity (TA) values are not used in the standard curve calculations. Rather, they are used as a diagnostic tool; the corrected B₀ divided by the actual TA (10X measured absorbance) will give the % Bound. This value should closely approximate the % Bound that can be calculated from the **Sample Data** (see page 27). Erratic absorbance values and a low (or no) % Bound could indicate the presence of organic solvents in the buffer or other technical problems (see page 31 for Troubleshooting).

Plot the Standard Curve

Plot %B/B₀ for standards S₁-S₈ versus corticosterone concentration (usually in pg/ml) using linear (y) and log (x) axes and fit the data to a 4-parameter logistic equation. Alternatively Plot - The data can also be linearized using a log transformation. The equation for this conversion is shown below. (**NOTE:** Do not use %B/B₀ in this calculation).

\[
\text{logit} \left(\frac{B}{B_0} \right) = \ln \left(\frac{B}{B_0} / (1 - B/B_0) \right)
\]

Plot the data as logit (B/B₀) versus log concentrations and perform a linear regression fit.

Determine the Sample Concentration

Calculate the %B/B₀ value for each sample. Determine the concentration of each sample using the equation obtained from the standard curve plot. **NOTE:** Remember to account for any concentration or dilution of the sample prior to the addition to the well. Samples with %B/B₀ values greater than 80% or less than 20% should be re-assayed as they generally fall out of the linear range of the standard curve. A 20% or greater disparity between the apparent concentration of two different dilutions of the same sample would indicate interference which could be eliminated by purification.

Hot Spike Method

Corticosterone (pg) in purified sample = Value from EIA (pg/ml) x 0.5 ml - added [³H]-Corticosterone (pg) / Recovery Factor

Corticosterone in sample (pg/ml) = \(\frac{\text{Corticosterone (pg) in purified sample}}{\text{Volume of sample used for purification (ml)}} \)

For liquid samples:

For solid samples:

\(\frac{\text{Corticosterone in sample (pg/ml)}}{\text{Volume of sample used for purification (ml)}} \)
The original concentration of the sample and recovery factor can be determined by the following method:

\[V = \text{EIA determined concentration of the unspiked sample (pg/ml)} \]
\[S = \text{concentration of the spike (pg/ml)} \]
\[Y = \text{EIA determined concentration of the spiked sample (pg/ml)} \]

\[\text{Corticosterone (pg) in purified sample} = \frac{Y - V}{S} \times 0.5 \text{ ml} \]

For liquid samples:

\[\text{Corticosterone in original sample (pg/ml)} = \frac{\text{Corticosterone (pg) in purified sample}}{\text{Volume of sample used for purification (ml)}} \]

For solid samples:

\[\text{Corticosterone in original sample (pg/g)} = \frac{\text{Corticosterone (pg) in purified sample}}{\text{Weight of sample (g)}} \]

Performance Characteristics

Sample Data

The standard curve presented here is an example of the data typically produced with this kit; however, your results will not be identical to these. You must run a new standard curve. Do not use the data below to determine the values of your samples. Your results could differ substantially.

<table>
<thead>
<tr>
<th>Dose (pg/ml)</th>
<th>Raw Data</th>
<th>Average</th>
<th>Corrected</th>
<th>%B/B₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>0.056</td>
<td>0.056</td>
<td>0.056</td>
<td>13.7</td>
</tr>
<tr>
<td>4,000</td>
<td>0.074</td>
<td>0.074</td>
<td>0.074</td>
<td>17.4</td>
</tr>
<tr>
<td>1,600</td>
<td>0.105</td>
<td>0.105</td>
<td>0.105</td>
<td>24.2</td>
</tr>
<tr>
<td>640</td>
<td>0.154</td>
<td>0.154</td>
<td>0.154</td>
<td>34.7</td>
</tr>
<tr>
<td>256</td>
<td>0.215</td>
<td>0.215</td>
<td>0.215</td>
<td>47.7</td>
</tr>
<tr>
<td>102.4</td>
<td>0.291</td>
<td>0.291</td>
<td>0.291</td>
<td>64.2</td>
</tr>
<tr>
<td>41.0</td>
<td>0.360</td>
<td>0.360</td>
<td>0.360</td>
<td>79.0</td>
</tr>
<tr>
<td>16.4</td>
<td>0.431</td>
<td>0.431</td>
<td>0.431</td>
<td>94.3</td>
</tr>
</tbody>
</table>

Table 2. Typical results
50% B/B₀ - 230 pg/ml
Detection Limit (80% B/B₀) - 40 pg/ml

Figure 6. Typical standard curve

Precision:
The intra- and inter-assay CV’s have been determined at multiple points on the standard curve. These data are summarized in the graph on page 28.

<table>
<thead>
<tr>
<th>Dose (pg/ml)</th>
<th>%CV* Intra-assay variation</th>
<th>%CV* Inter-assay variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>18.6</td>
<td>17.1</td>
</tr>
<tr>
<td>4,000</td>
<td>9.3</td>
<td>5.6</td>
</tr>
<tr>
<td>1,600</td>
<td>18.1</td>
<td>7.3</td>
</tr>
<tr>
<td>640</td>
<td>8.4</td>
<td>3.5</td>
</tr>
<tr>
<td>256</td>
<td>13.5</td>
<td>7.5</td>
</tr>
<tr>
<td>102.4</td>
<td>9.5</td>
<td>4.1</td>
</tr>
<tr>
<td>41.0</td>
<td>16.0</td>
<td>12.0</td>
</tr>
<tr>
<td>16.4</td>
<td>19.3</td>
<td>17.1</td>
</tr>
</tbody>
</table>

*%CV represents the variation in concentration (not absorbance) as determined using a reference standard curve.

Table 3. Intra- and inter-assay variation
Specificity:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cross-reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosterone</td>
<td>100%</td>
</tr>
<tr>
<td>11-deoxy Corticosterone</td>
<td>19.6%</td>
</tr>
<tr>
<td>11-dehydro Corticosterone</td>
<td>1.6%</td>
</tr>
<tr>
<td>Progesterone</td>
<td>1.01%</td>
</tr>
<tr>
<td>Aldosterone</td>
<td>0.25%</td>
</tr>
<tr>
<td>Androstenedione</td>
<td>0.24%</td>
</tr>
<tr>
<td>Cortisol</td>
<td>0.18%</td>
</tr>
<tr>
<td>Testosterone</td>
<td>0.18%</td>
</tr>
<tr>
<td>5α-DHT</td>
<td>0.03%</td>
</tr>
<tr>
<td>Cortisone</td>
<td>0.02%</td>
</tr>
<tr>
<td>DHEA</td>
<td><0.01%</td>
</tr>
<tr>
<td>DHEA-S</td>
<td><0.01%</td>
</tr>
<tr>
<td>Pregnenolone</td>
<td><0.01%</td>
</tr>
</tbody>
</table>

Table 4. Specificity of the Corticosterone EIA Antiserum

Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Recommended Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erratic values; dispersion of duplicates</td>
<td>A. Trace organic contaminants in the water source</td>
<td>A. Replace activated carbon filter or change source of UltraPure water</td>
</tr>
<tr>
<td></td>
<td>B. Contamination of water with organic solvents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Poor pipetting/technique</td>
<td></td>
</tr>
<tr>
<td>High NSB (>0.035)</td>
<td>A. Poor washing</td>
<td>A. Rewash plate and redevelop</td>
</tr>
<tr>
<td></td>
<td>B. Exposure of NSB wells to specific antibody</td>
<td></td>
</tr>
<tr>
<td>Very low B₀</td>
<td>A. Trace organic contaminants in the water source</td>
<td>A. Replace activated carbon filter or change source of UltraPure water</td>
</tr>
<tr>
<td></td>
<td>B. Plate requires additional development time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Contamination of water with organic solvents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Dilution error in preparing reagents</td>
<td></td>
</tr>
<tr>
<td>Low sensitivity (shift in dose response curve)</td>
<td>Standard is degraded</td>
<td>Replace standard</td>
</tr>
<tr>
<td>Analyses of two dilutions of a biological sample do not agree (i.e., more than 20% difference)</td>
<td>Interfering substances are present</td>
<td>Purify sample prior to analysis by EIA</td>
</tr>
<tr>
<td>Only Total Activity (TA) wells develop</td>
<td>Trace organic contaminants in the water source</td>
<td>Replace activated carbon filter or change source of UltraPure water</td>
</tr>
</tbody>
</table>
References

Related Products

Aldosterone EIA Kit - Monoclonal - Cat. No. 10004377
Estradiol EIA Kit - Cat. No. 582251
Estriol EIA Kit - Cat. No. 582281
Progesterone EIA Kit - Cat. No. 582601
Testosterone EIA Kit - Cat. No. 582701
UltraPure Water - Cat. 400000
Warranty and Limitation of Remedy

Cayman Chemical Company makes no warranty or guarantee of any kind, whether written or oral, expressed or implied, including without limitation, any warranty of fitness for a particular purpose, suitability and merchantability, which extends beyond the description of the chemicals hereof. Cayman warrants only to the original customer that the material will meet our specifications at the time of delivery. Cayman will carry out its delivery obligations with due care and skill. Thus, in no event will Cayman have any obligation or liability, whether in tort (including negligence) or in contract, for any direct, indirect, incidental or consequential damages, even if Cayman is informed about their possible existence. This limitation of liability does not apply in the case of intentional acts or negligence of Cayman, its directors or its employees.

Buyer’s exclusive remedy and Cayman’s sole liability hereunder shall be limited to a refund of the purchase price, or at Cayman’s option, the replacement, at no cost to Buyer, of all material that does not meet our specifications.

Said refund or replacement is conditioned on Buyer giving written notice to Cayman within thirty (30) days after arrival of the material at its destination. Failure of Buyer to give said notice within thirty (30) days shall constitute a waiver by Buyer of all claims hereunder with respect to said material.

For further details, please refer to our Warranty and Limitation of Remedy located on our website and in our catalog.