Creatinine (urinary) Colorimetric Assay Kit

Item No. 500701

www.caymanchem.com
Customer Service 800.364.9897
Technical Support 888.526.5351
1180 E. Ellsworth Rd · Ann Arbor, MI · USA
GENERAL INFORMATION

Materials Supplied

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Item</th>
<th>96 wells Quantity/Size</th>
<th>480 wells Quantity/Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>10005314</td>
<td>Creatinine Standard</td>
<td>1 vial/3 ml</td>
<td>1 vial/15 ml</td>
</tr>
<tr>
<td>10005315</td>
<td>Creatinine Color Reagent</td>
<td>1 vial/12 ml</td>
<td>1 vial/60 ml</td>
</tr>
<tr>
<td>10005316</td>
<td>Creatinine Sodium Hydroxide</td>
<td>1 vial/5 ml</td>
<td>1 vial/25 ml</td>
</tr>
<tr>
<td>10005317</td>
<td>Creatinine Acid Solution</td>
<td>1 vial/1 ml</td>
<td>1 vial/5 ml</td>
</tr>
<tr>
<td>10008477</td>
<td>Creatinine Sodium Borate</td>
<td>1 vial/2.5 ml</td>
<td>1 vial/12.5 ml</td>
</tr>
<tr>
<td>10008478</td>
<td>Creatinine Surfactant</td>
<td>1 vial/7.5 ml</td>
<td>1 vial/37.5 ml</td>
</tr>
<tr>
<td>400014</td>
<td>96-Well Solid Plate (Colorimetric Assay)</td>
<td>1 plate</td>
<td>5 plates</td>
</tr>
<tr>
<td>400012</td>
<td>96-Well Cover Sheet</td>
<td>1 cover</td>
<td>5 covers</td>
</tr>
</tbody>
</table>

If any of the items listed above are damaged or missing, please contact our Customer Service department at (800) 364-9897 or (734) 971-3335. We cannot accept any returns without prior authorization.
WARNING: THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

Safety Data
This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.

Precautions
Please read these instructions carefully before beginning this assay.
It is recommended to take appropriate precautions when using the kit reagents (i.e., lab coat, gloves, eye goggles, etc.) as some of them may be harmful.
The sodium hydroxide and acid solutions are corrosive and harmful if swallowed. Contact with skin may cause burns. In case of contact with skin or eyes, rinse immediately with plenty of water for 15 minutes.
The color solution is harmful if swallowed and irritating to eyes, respiratory system, and skin. In case of contact with skin or eyes, rinse immediately with plenty of water for 15 minutes. The color solution is explosive when dry.

If You Have Problems
Technical Service Contact Information
Phone: 888-526-5351 (USA and Canada only) or 734-975-3888
Fax: 734-971-3641
Email: techserv@caymanchem.com
Hours: M-F 8:00 AM to 5:30 PM EST

In order for our staff to assist you quickly and efficiently, please be ready to supply the lot number of the kit (found on the outside of the box).

Storage and Stability
Store the Creatinine Standard at 4°C and the rest of the kit at room temperature (18-26°C). This kit will perform as specified if stored properly and used before the expiration date indicated on the outside of the box.

Materials Needed But Not Supplied
1. A plate reader capable of measuring absorbance between 490-500 nm
2. Adjustable pipettes and a repeating pipettor
3. A source of pure water; glass distilled water or HPLC-grade water is acceptable
Background

Creatine synthesized in kidney, liver, and pancreas is transported in blood to muscle and brain where it is phosphorylated to phosphocreatine. Some free creatine in muscle is converted to creatinine. The amount of creatinine produced is proportional to the individuals muscle mass. In the absence of renal disease, the excretion rate of creatinine in an individual is relatively constant. Thus, urinary creatinine levels may be used as an index of standardization for other tests. Measurement of creatinine clearance is also useful in detecting renal disease and estimating the extent of impairment of renal function.¹

About This Assay

Cayman's Creatinine (urinary) Colorimetric Assay can be used to measure creatinine levels in urine. The assay relies on the Jaffe' reaction, wherein a yellow/orange color forms when the metabolite is treated with alkaline picrate.² The color derived from creatinine is then destroyed at acidic pH. The difference in color intensity measured at 500 nm before and after acidification is proportional to the creatinine concentration.¹⁻³⁻⁴ The sample creatinine concentration is determined using a creatinine standard curve.

Reagent Preparation

1. Creatinine Standard - (Item No. 10005314)
 The Creatinine Standard contains 20 mg/dl of creatinine in water. It is ready to use to prepare the standard curve. Sufficient Creatinine Standard is provided to prepare two standard curves using the 3 ml size or ten standard curves using the 15 ml size.

2. Creatinine Color Reagent - (Item No. 10005315)
 The color reagent contains 1.2% picric acid. The picric acid may contain crystals. This is normal and will disappear upon making the Alkaline Picrate Solution.

3. Creatinine Sodium Hydroxide - (Item No. 10005316)
 The vial contains 1 M sodium hydroxide (NaOH). It is ready to use as supplied.

4. Creatinine Acid Solution - (Item No. 10005317)
 The acid solution contains a mixture of sulfuric and acetic acid. It is ready to use as supplied.

5. Creatinine Sodium Borate - (Item No. 10008477)
 The vial contains a solution of sodium borate. It is ready to use as supplied.

6. Creatinine Surfactant - (Item No. 10008478)
 The vial contains a solution of surfactant. It is ready to used as supplied.
Sample Preparation

Urine

Typically, human urine has creatinine levels in the range of 25-400 mg/dl (one time collection) or 500-2,000 mg/24 hours.

1. Collect urine in a clean container and store on ice. If not assaying on the same day, freeze the sample at -80°C. The sample will be stable for at least one month.

2. If a 24 hour urine sample is desired, collect the total volume of urine over a 24 hour period. Store the pooled urine at 4°C until all the collections are taken. If not assaying after all the collections are taken, freeze 5 ml of the pooled 24 hour collection at -80°C. The sample will be stable for at least one month.

3. Urine should be diluted 1:10 or 1:20 with HPLC-grade water before assaying.

NOTE: The Creatinine (urinary) Colorimetric Assay is not recommended for plasma or serum samples. Precipitation may occur in the wells upon the addition of the acid solution.

7. Alkaline Picrate Solution

The volume of Alkaline Picrate Solution needed is dependent on the number of wells being assayed. Calculate 150 µl for each well (i.e., To prepare sufficient reagent for one 96-well plate, mix together 2 ml of Creatinine Sodium Borate (Item No. 10008477), 6 ml of Creatinine Surfactant (Item No. 10008478), 10 ml of Creatinine Color Reagent (Item No. 10005315), and 3.6 ml of Creatinine NaOH (Item No. 10005316)). The Alkaline Picrate Solution is stable for at least one week stored in the dark at room temperature.
Plate Set Up

There is no specific pattern for using the wells on the plate. A typical layout of Creatinine Standards and samples to be measured in duplicate is given below in Figure 1, below. We suggest you record the contents of each well on the template sheet provided (see page 18).

A - H = Standards
S1 - S40 = Sample wells

Figure 1. Sample plate format

Pipetting Hints

- It is recommended that a repeating pipettor be used to deliver reagents to the wells. This saves time and helps to maintain more precise incubation times.
- Before pipetting each reagent, equilibrate the pipette tip in that reagent (i.e., slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.

General Information

- The final volume of the assay is 170 µl in all wells.
- All reagents except samples must be equilibrated to room temperature before beginning the assay.
- It is not necessary to use all the wells on the plate at one time.
- If the concentration of creatinine in the sample is not known or if it is expected to be beyond the range of the standard curve, it is prudent to assay the sample at several dilutions.
- It is recommended that the standards and samples be assayed at least in duplicate (triplicate is recommended).
- Monitor the absorbance at 490-500 nm using a plate reader.
Standard Preparation
For the determination of creatinine in urine, prepare the Creatinine Standards according to Table 1, below. Take eight clean glass test tubes and label them A-H. Add the amount of Creatinine Standard and HPLC-grade water to each tube as described in Table 1, below.

<table>
<thead>
<tr>
<th>Tube</th>
<th>Creatinine Standard (μl)</th>
<th>HPLC-grade water (μl)</th>
<th>Final concentration (mg/dl creatinine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>50</td>
<td>450</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>150</td>
<td>350</td>
<td>6</td>
</tr>
<tr>
<td>E</td>
<td>200</td>
<td>300</td>
<td>8</td>
</tr>
<tr>
<td>F</td>
<td>250</td>
<td>250</td>
<td>10</td>
</tr>
<tr>
<td>G</td>
<td>300</td>
<td>200</td>
<td>12</td>
</tr>
<tr>
<td>H</td>
<td>375</td>
<td>125</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 1. Concentration of Standards

Performing the Assay
1. Creatinine Standard Wells - Add 15 μl of Creatinine Standard (tubes A-H) per well in the designed wells on the plate (see suggested plate configuration, Figure 1, page 10).
2. Sample Wells - Add 15 μl of sample to two wells. To obtain reproducible results, creatinine levels from each sample should fall within the absorbance values of the standard curve. When necessary, samples can be diluted with HPLC-grade water to bring the creatinine concentration to this level.
3. Initiate the reactions by adding 150 μl of Alkaline Picrate Solution to all the wells being used.
4. Cover the plate with the plate cover and incubate on a shaker for 10 minutes at room temperature.
5. Remove the plate cover and read the absorbance at 490-500 nm using a plate reader. This absorbance is the Initial absorbance reading (I_{abs}).
6. Add 5 μl of acid solution to all of the wells being used.
7. Cover the plate with the plate cover and incubate on a shaker for 20 minutes at room temperature.
8. Remove the cover and read the absorbance at 490-500 nm using a plate reader. This absorbance is the Final absorbance reading (F_{abs}).
Calculations

1. Calculate the average Initial absorbance (I_{abs}) of each standard and sample.
2. Calculate the average Final absorbance (F_{abs}) of each standard and sample.
3. Subtract the average Final absorbance from the average Initial absorbance. This is your Corrected absorbance.
4. Subtract the average Corrected absorbance of standard A from itself and all other standards and samples. This is the adjusted absorbance.
5. Plot the adjusted absorbance of the standards (from step 4 above) as a function of the final concentration of creatinine from Table 1 (on page 12). See Figure 2, on page 16, for a typical standard curve.
6. Calculate the creatinine concentration of the samples using the equation obtained from the linear regression of the standard curve substituting adjusted absorbance values for each sample.

$$\text{Creatinine (mg/dl)} = \left(\frac{\text{Sample absorbance} \cdot (\text{y-intercept})}{\text{Slope}} \right) \times \text{Sample dilution}$$

NOTE: To convert the results from mg/dl to µmol/l, multiply the creatinine concentration (mg/dl) by 88.4.

Performance Characteristics

Precision:
Intra-assay coefficient of variation = 2.7% ($n = 84$). Inter-assay coefficient of variation = 3% ($n = 5$).

Assay Range:
Under the standardized conditions of the assay described in this booklet, the dynamic range of the kit is 0-15 mg/dl of creatinine.
Representative Standard Curve

The standard curve presented below is an example of the data typically provided with this kit; however, your results will not be identical to these. You must run a new standard curve - do not use these to determine the values of your samples.

\[y = 0.041x + 0.0001 \]

\[r^2 = 0.9997 \]

Figure 2. Creatinine standard curve

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Recommended Solutions</th>
</tr>
</thead>
</table>
| Erratic values; dispersion of duplicates/triplicates | A. Poor pipetting/technique
B. Bubble in the well(s) | A. Be careful not to splash the contents of the wells
B. Carefully tap the side of the plate with your finger to remove bubbles |
| No creatinine was detected in the sample wells | Sample was too dilute | Re-assay the sample using less of a dilution |
| Sample absorbance values are above highest point in standard curve | Creatinine concentration was too high in the sample | Dilute samples with HPLC-grade water and re-assay. |
| The creatinine standard curve did not work | Either the creatinine standards were not diluted properly or the creatinine standard has deteriorated | Set up the standards according to table 1 on page 12 and re-assay |

References

Warranty and Limitation of Remedy

Buyer agrees to purchase the material subject to Cayman's Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website.

This document is copyrighted. All rights are reserved. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from Cayman Chemical Company.

©04/14/2017, Cayman Chemical Company, Ann Arbor, MI, All rights reserved. Printed in U.S.A.