p53 Transcription Factor Assay Kit

Item No. 600020

www.caymanchem.com
Customer Service 800.364.9897
Technical Support 888.526.5351
1180 E. Ellsworth Rd · Ann Arbor, MI · USA
Materials Supplied

Kit components may be stored at -20°C prior to use. For long term storage, the Positive Control should be thawed on ice, aliquoted at 25 µl/vial, and stored at -80°C. After opening the kit, we recommend each kit component be stored according to the temperature listed below.

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Item</th>
<th>Quantity/Size</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>10006880</td>
<td>Transcription Factor Binding Assay Buffer (4X)</td>
<td>1 vial/3 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>10007472</td>
<td>Transcription Factor Reagent A</td>
<td>1 vial/120 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>600022</td>
<td>Transcription Factor p53 Positive Control</td>
<td>1 vial/150 µl</td>
<td>-80°C</td>
</tr>
<tr>
<td>10006882</td>
<td>Transcription Factor Antibody Binding Buffer (10X)</td>
<td>1 vial/3 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>600023</td>
<td>Transcription Factor p53 Primary Antibody</td>
<td>1 vial/120 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>400062</td>
<td>Wash Buffer Concentrate (400X)</td>
<td>1 vial/5 ml</td>
<td>RT</td>
</tr>
<tr>
<td>400035</td>
<td>Polysorbate 20</td>
<td>1 vial/3 ml</td>
<td>RT</td>
</tr>
<tr>
<td>600024</td>
<td>Transcription Factor p53 Competitor dsDNA</td>
<td>1 vial/120 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>10009279</td>
<td>Transcription Factor Goat Anti-Mouse HRP Conjugate</td>
<td>1 vial/120 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>600021</td>
<td>Transcription Factor p53 96-Well Strip Plate</td>
<td>1 plate</td>
<td>4°C</td>
</tr>
<tr>
<td>400012</td>
<td>96-Well Cover Sheet</td>
<td>1 cover</td>
<td>RT</td>
</tr>
<tr>
<td>10006888</td>
<td>Transcription Factor Developing Solution</td>
<td>1 vial/12 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>10006889</td>
<td>Transcription Factor Stop Solution</td>
<td>1 vial/12 ml</td>
<td>RT</td>
</tr>
</tbody>
</table>

If any of the items listed above are damaged or missing, please contact our Customer Service department at (800) 364-9897 or (734) 971-3335. We cannot accept any returns without prior authorization.
WARNING: THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

Safety Data

This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.

Precautions

Please read these instructions carefully before beginning this assay.

Kit components may be stored at -20°C prior to use. For long term storage, the Positive Control should be thawed on ice, aliquoted at 25 µl/vial and stored at -80°C. If the assay will be used on multiple days, we recommend each kit component be stored according to the temperatures listed in the booklet.

If You Have Problems

Technical Service Contact Information

Phone: 888-526-5351 (USA and Canada only) or 734-975-3888
Fax: 734-971-3641
E-Mail: techserv@caymanchem.com
Hours: M-F 8:00 AM to 5:30 PM EST

In order for our staff to assist you quickly and efficiently, please be ready to supply the lot number of the kit (found on the outside of the box).

Storage and Stability

This kit will perform as specified if stored as directed and used before the expiration date indicated on the outside of the box.

Materials Needed But Not Supplied

1. A plate reader capable of measuring absorbance at 450 nm
2. Adjustable pipettes and a repeating pipettor
3. A source of UltraPure water; glass Milli-Q or HPLC-grade water are acceptable
4. 300 mM dithiothreitol (DTT)
5. Nuclear Extraction Kit available from Cayman (Item No. 10009277) or buffers for preparation of nuclear extracts (see pages 9-13)

NOTE: The components in each kit lot have been quality assured and warranted in this specific combination only; please do not mix them with components from other lots.
INTRODUCTION

Background

The tumor suppressor protein, p53 is a transcription factor that is commonly referred to as the “guardian of the genome” because of its crucial role in coordinating cellular responses to genotoxic stress. The tumor suppressor activity of p53 is mediated by a variety of mechanisms including cell cycle arrest, apoptosis, and cellular senescence. Approximately 50% of human cancers carry a mutation in the p53 gene; of those tumors that do not have a mutation in the p53 gene, a significant proportion of them have inactivated p53 by alternative mechanisms. Activation of p53 occurs by a variety of internal and external stress signals that result in stabilization of the protein, enhancement of its DNA binding, and transcriptional activity. These changes in p53 are mediated by post-translational modifications of p53 and protein-protein interactions, including ubiquitination, acetylation, phosphorylation, sumoylation, neddylation, methylation, and glycosylation. DNA damage, oncogene activation, ribosomal stress, loss of cell-matrix adhesion, and hypoxia have all been shown to activate p53 resulting in transcription of p53-targeted genes. These p53 target gene products include p21, WAF1, Cip1, MDM2, GADD45, Cyclin G, Bax, and IGF-BP3. There are also genes, which can be repressed by p53, including Bcl-2, Bcl-X, cyclin B1, MAP4, and survivin, some of which are negative regulators of apoptosis. The functions of p53 target genes are diverse, corresponding to p53’s activity as a multifunctional protein.

Under normal cellular conditions, p53 is maintained at low concentrations and in an inactive form. The regulation of p53 levels and activity involves a complex network of cellular proteins including HPV16, PARP-1, WT1, E1b/E4, MDM2, and others. WT1 or E1B/E4 bind to p53 increasing its stability whereas p53’s binding with MDM2 accelerates its degradation through ubiquitination and subsequent degradation. When p53 is ubiquitinated it moves out of the nucleus into the cytoplasm where it is rapidly degraded by the proteasome. The MDM2 gene contains a p53 promoter and is therefore transcriptionally regulated by p53 during stress. In this manner p53 itself regulates MDM2 at the level of transcription, where MDM2 protein regulates p53 protein activity.

p53 holds many important clinical implications in the treatment of cancer and is often found to be genetically altered in tumors making it a useful biomarker in carcinogenesis. Restoring endogenous wild-type p53 activity via disruption of the MDM2-p53 interaction is of great interest in cancer therapeutics. In addition, the heterogenous autosomal dominant disorder, Li Fraumeni Syndrome, caused by mutations in the p53 gene, is another area of great interest in p53 research.

About This Assay

Cayman’s p53 Transcription Factor Assay is a non-radioactive, sensitive method for detecting specific transcription factor DNA binding activity in nuclear extracts. A 96-well enzyme-linked immunosorbent assay (ELISA) replaces the cumbersome radioactive electrophoretic mobility shift assay (EMSA). A specific double-stranded DNA (dsDNA) sequence containing the p53 response element is immobilized onto the wells of a 96-well plate (see Figure 1, on page 8). p53 contained in a nuclear extract, binds specifically to the p53 response element. p53 is detected by addition of a specific primary antibody directed against p53. A secondary antibody conjugated to HRP is added to provide a sensitive colorimetric readout at 450 nm.
Sample Buffer Preparation

All buffers and reagents below are required for preparation of Nuclear Extracts and can be purchased directly from Cayman. Alternatively, Cayman’s Nuclear Extraction Kit (Item No. 10009277) can be used to isolate Nuclear Proteins.

1. **Nuclear Extraction PBS (10X)**

 1.71 M NaCl, 33.53 mM KCl, 126.8 mM Na$_2$HPO$_4$, 22.04 mM KH$_2$PO$_4$, pH 7.4

2. **Nuclear Extraction PBS (1X)**

 Dilute 100 ml of 10X stock with 900 ml distilled H$_2$O

3. **Nuclear Extraction Phosphatase Inhibitor Cocktail (50X)**

 0.5 M NaF
 0.05 M β-glycerophosphate
 0.05 M Na$_3$OV$_4$

 Store at -80°C

4. **Nuclear Extraction PBS/Phosphatase Inhibitor Solution (1X)**

 Add 200 μl of 50X Phosphatase Inhibitor Solution to 10 ml of 1X Nuclear Extraction PBS, mix well, and keep on ice. Make fresh daily.

Figure 1. Schematic of the Transcription Factor Binding Assay

Each well is coated with a consensus dsDNA sequence. The plate is washed to remove all of the unbound reagents. Read absorbance at 450 nm.
5. **Nuclear Extraction Protease Inhibitor Cocktail (100X)**
 - 10 mM AEBSF
 - 0.5 mM Bestatin
 - 0.2 mM Leupeptin Hemisulfate Salt
 - 0.15 mM E-64
 - 0.1 mM Pepstatin A
 - 0.008 mM Aprotinin from Bovine Lung
 Made in DMSO, store at -20°C

6. **Nuclear Extraction Hypotonic Buffer (10X)**
 - 100 mM HEPES, pH 7.5, containing 40 mM NaF, 10 μM Na₂MoO₄, and 0.1 mM EDTA
 - Store at 4°C

7. **Complete Hypotonic Buffer (1X)**
 Prepare as outlined in Table 1. The phosphatase and protease inhibitors lose activity shortly after dilution; therefore any unused 1X Complete Hypotonic Buffer should be discarded.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>150 mm plate</th>
<th>~1.5 x 10⁷ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotonic Buffer (10X)</td>
<td>100 µl</td>
<td></td>
</tr>
<tr>
<td>Phosphatase Inhibitors (50X)</td>
<td>20 µl</td>
<td></td>
</tr>
<tr>
<td>Protease Inhibitors (100X)</td>
<td>10 µl</td>
<td></td>
</tr>
<tr>
<td>Distilled Water</td>
<td>870 µl</td>
<td></td>
</tr>
<tr>
<td>Total Volume</td>
<td>1,000 µl</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Preparation of Complete Hypotonic Buffer
8. **Nonidet P-40 Assay Reagent (10%)**
 Nonidet P-40 or suitable substitute at a concentration of 10% (v/v) in H$_2$O
 Store at room temperature

9. **Nuclear Extraction Buffer (2X)**
 20 mM HEPES, pH 7.9, containing, 0.2 mM EDTA, 3 mM MgCl$_2$, 840 mM NaCl, and 20% glycerol (v/v)
 Store at 4°C

10. **Complete Nuclear Extraction Buffer (1X)**
 Prepare as outlined in Table 2. Some of the phosphatase and protease inhibitors lose activity shortly after dilution; therefore any remaining 1X Extraction Buffer should be discarded.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>150 mm plate ~1.5 x 107 cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Extraction Buffer (2X)</td>
<td>75 µl</td>
</tr>
<tr>
<td>Protease Inhibitors (100X)</td>
<td>1.5 µl</td>
</tr>
<tr>
<td>Phosphatase Inhibitors (50X)</td>
<td>3.0 µl</td>
</tr>
<tr>
<td>DTT (10 mM)</td>
<td>15 µl</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>55.5 µl</td>
</tr>
<tr>
<td>Total Volume</td>
<td>150 µl</td>
</tr>
</tbody>
</table>

Table 2. Preparation of Complete Nuclear Extraction Buffer
Purification of Cellular Nuclear Extracts

Cayman’s Nuclear Extraction Kit (Item No. 10009277) can be used to isolate nuclear proteins. Alternatively, the procedure described below can be used for a 15 ml cell suspension grown in a T75 flask or adherent cells (100 mm dish 80-90% confluent) where 10⁷ cells yields approximately 50 μg of nuclear protein.

1. Collect ~10⁷ cells in pre-chilled 15 ml tubes.
2. Centrifuge suspended cells at 300 x g for five minutes at 4°C.
3. Discard the supernatant. Resuspend cell pellet in 5 ml of ice-cold 1X Nuclear Extraction PBS/Phosphatase Inhibitor Solution and centrifuge at 300 x g for five minutes at 4°C. Repeat one time.
4. Discard the supernatant. Add 500 µl ice-cold 1X Complete Hypotonic Buffer. Mix gently by pipetting and transfer resuspended pellet to pre-chilled 1.5 ml microcentrifuge tube.
5. Incubate cells on ice for 15 minutes allowing cells to swell.
6. Add 100 µl of 10% Nonidet P-40 (or suitable substitute). Mix gently by pipetting.
7. Centrifuge for 30 seconds (pulse spin) at 4°C in a microcentrifuge. Transfer the supernatant which contains the cytosolic fraction to a new tube and store at -80°C.
8. Resuspend the pellet in 100 µl ice-cold Complete Nuclear Extraction Buffer (1X) (with protease and phosphatase inhibitors). Vortex 15 seconds at highest setting then gently rock the tube on ice for 15 minutes using a shaking platform. Vortex sample for 30 seconds at highest setting and gently rock for an additional 15 minutes.
9. Centrifuge at 14,000 x g for 10 minutes at 4°C. The supernatant contains the nuclear fraction. Aliquot to clean chilled tubes, flash freeze, and store at -80°C. Avoid freeze/thaw cycles. The extracts are ready to use in the assay.
10. Keep a small aliquot of the nuclear extract to quantitate the protein concentration.

Reagent Preparation

1. **Transcription Factor Antibody Binding Buffer (10X)**
 One vial (Item No. 10006882) contains 3 ml of a 10X stock of Transcription Factor Antibody Binding Buffer (ABB) to be used for diluting the primary and secondary antibodies. To prepare a 1X ABB, dilute 1:10 by adding 27 ml of UltraPure water. Store at 4°C for up to six months.

2. **Wash Buffer Concentrate (400X)**
 One vial (Item No. 400062) contains 5 ml of 400X Wash Buffer. Dilute the contents of the vial to a total volume of 2 liters with UltraPure water and add 1 ml of Polysorbate 20 (Item No. 400035). NOTE: Polysorbate 20 is a viscous liquid and cannot be measured by a pipette. A positive displacement device such as a syringe should be used to deliver small quantities accurately. A smaller volume of Wash Buffer Concentrate can be prepared by diluting the Wash Buffer Concentrate 1:400 and adding Polysorbate 20 (0.5 ml/liter of Wash Buffer). Store at 4°C for up to two months.
3. **Transcription Factor Binding Assay Buffer (4X)**

One vial (Item No. 10006880) contains 3 ml of a 4X stock of Transcription Factor Binding Assay Buffer (TFB). Prepare Complete TFB Assay Buffer (CTFB) immediately prior to use in 1.5 ml centrifuge tubes or 15 ml conical tubes as outlined in Table 3 below. This buffer is now referred to as CTFB. It is recommended that the CTFB be used the same day it is prepared.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/Well</th>
<th>Volume/Strip</th>
<th>Volume/96-well plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UltraPure water</td>
<td>73 µl</td>
<td>584 µl</td>
<td>7,008 µl</td>
</tr>
<tr>
<td>4X Transcription Factor Binding Assay Buffer</td>
<td>25 µl</td>
<td>200 µl</td>
<td>2,400 µl</td>
</tr>
<tr>
<td>Reagent A (Item No. 10007472)</td>
<td>1 µl</td>
<td>8 µl</td>
<td>96 µl</td>
</tr>
<tr>
<td>300 mM DTT</td>
<td>1 µl</td>
<td>8 µl</td>
<td>96 µl</td>
</tr>
<tr>
<td>Total Required</td>
<td>100 µl</td>
<td>800 µl</td>
<td>9,600 µl</td>
</tr>
</tbody>
</table>

Table 3. Preparation of Complete Transcription Factor Binding Assay Buffer

4. **Transcription Factor p53 Positive Control**

One vial (Item No. 600022) contains 150 µl of Nutlin-3-stimulated MCF-7 nuclear extract. This nuclear extract is provided as a positive control for p53 activation; it is not intended for plate to plate comparisons. The Positive Control provided is sufficient for 15 reactions and will provide a strong signal (>0.5 AU at 450 nm) when used at 10 µl/well. When using this Positive Control, a decrease in signal may occur with repeated freeze/thaw cycles. It is recommended that the Positive Control be aliquoted at 25 µl per vial and stored at -80°C to avoid loss in signal from repeated freeze/thaw cycles.
Plate Set Up

There is no specific pattern for using the wells on the plate. A typical layout of p53 Positive Control (PC), Competitor dsDNA (C1), and samples of nuclear extracts (S1-S44) to be measured in duplicate is given below in Figure 2. We suggest you record the contents of each well on the template sheet provided (see page 30).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>S1</td>
</tr>
<tr>
<td>B</td>
<td>S2</td>
</tr>
<tr>
<td>C</td>
<td>S3</td>
</tr>
<tr>
<td>D</td>
<td>S4</td>
</tr>
<tr>
<td>E</td>
<td>S5</td>
</tr>
<tr>
<td>F</td>
<td>S6</td>
</tr>
<tr>
<td>G</td>
<td>S7</td>
</tr>
<tr>
<td>H</td>
<td>S8</td>
</tr>
</tbody>
</table>

S1-S44 - Sample Wells
NSB - Non-specific Binding Wells
PC - Positive Control Wells
Blk - Blank Wells
C1 - Competitor dsDNA Wells

Figure 2. Sample plate format

Pipetting Hints

- Use different tips to pipette each reagent.
- Before pipetting each reagent, equilibrate the pipette tip in that reagent (i.e., slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.

General Information

- It is not necessary to use all the wells on the plate at one time; however a Positive Control should be run every time.
- For each plate or set of strips it is recommended that two Blk, two NSB, and two PC wells be included.
Performing the Assay

Binding of active p53 to the consensus sequence

1. Equilibrate the plate and buffers to room temperature prior to opening. Remove the plate from the foil and select the number of strips needed. The 96-well plate supplied with this kit is ready to use.

 NOTE: If you are not using all of the strips at once, place the unused strips back in the plate packet and store at 2-4°C. Be sure that the packet is sealed with the desiccant inside.

2. Prepare the CTFB as outlined in Table 3, on page 16.

3. Add appropriate amount of reagent(s) listed below to the designated wells as follows:
 - Blk - add 100 μl of CTFB to designated wells.
 - NSB - add 100 μl of CTFB to designated wells. Do not add samples or Positive Control to these wells.
 - C1 - Add 80 μl of CTFB prior to adding 10 μl of Transcription Factor p53 Competitor dsDNA (Item No. 600024) to designated wells. Add 10 μl of control cell lysate or sample.

 NOTE: Competitor dsDNA must be added prior to adding the Positive Control or nuclear extracts.

 - S1-S44 - Add 90 μl of CTFB followed by 10 μl of Nuclear Extract to designated wells. A protocol for isolation of nuclear extracts is given on page 14.
 - PC - Add 90 μl of CTFB followed by 10 μl of Positive Control to appropriate wells.

4. Use the cover provided to seal the plate. Incubate overnight at 4°C or one hour at room temperature without agitation (incubation for one hour will result in a less sensitive assay).

5. Empty the wells and wash five times with 200 μl of 1X Wash Buffer. After each wash empty the wells in the sink. After the final wash (wash #5), tap the plate on a paper towel to remove any residual Wash Buffer.

Addition of Transcription Factor p53 Primary Antibody

1. Dilute the Transcription Factor p53 Primary Antibody (Item No. 600023) 1:100 in 1X ABB as outlined in Table 4 below. Add 100 μl of diluted p53 Primary Antibody to each well except the Blk wells.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/Well</th>
<th>Volume/Strip</th>
<th>Volume/96-well plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1X ABB</td>
<td>99 μl</td>
<td>792 μl</td>
<td>9,504 μl</td>
</tr>
<tr>
<td>p53 Primary Antibody</td>
<td>1 μl</td>
<td>8 μl</td>
<td>96 μl</td>
</tr>
<tr>
<td>Total required</td>
<td>100 μl</td>
<td>800 μl</td>
<td>9,600 μl</td>
</tr>
</tbody>
</table>

Table 4. Dilution of Primary Antibody

2. Use the adhesive cover provided to seal the plate.

3. Incubate the plate for one hour at room temperature without agitation.

4. Empty the wells and wash each well five times with 200 μl of 1X Wash Buffer. After each wash, empty the contents of the plate into the sink. After the final wash (wash #5), tap the plate three to five times on a paper towel to remove any residual Wash Buffer.
Addition of the Transcription Factor Goat Anti-Mouse HRP Conjugate

1. Dilute the Transcription Factor Goat Anti-Mouse HRP Conjugate (Item No. 10009279) 1:100 in 1X ABB as outlined in Table 5 below. Add 100 μl of diluted secondary antibody to each well except the Blk wells.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/Well</th>
<th>Volume/Strip</th>
<th>Volume/96-well plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1X ABB</td>
<td>99 μl</td>
<td>792 μl</td>
<td>9,504 μl</td>
</tr>
<tr>
<td>Goat Anti-Mouse HRP Conjugate</td>
<td>1 μl</td>
<td>8 μl</td>
<td>96 μl</td>
</tr>
<tr>
<td>Total required</td>
<td>100 μl</td>
<td>800 μl</td>
<td>9,600 μl</td>
</tr>
</tbody>
</table>

Table 5. Dilution of Secondary Antibody

2. Use the adhesive cover provided to seal the plate.
3. Incubate for one hour at room temperature without agitation.
4. Empty the wells and wash five times with 200 μl of 1X Wash Buffer. After each wash, empty the contents of the plate into the sink. After the final wash (wash #5), tap the plate three to five times on a paper towel to remove any residual Wash Buffer.

Develop and Read the Plate

1. To each well being used add 100 μl of Transcription Factor Developing Solution (Item No. 10006888), which has been equilibrated to room temperature.
2. Incubate the plate for 15 to 45 minutes at room temperature with gentle agitation protected from light. Allow the wells to turn medium to dark blue prior to adding Transcription Factor Stop Solution (Item No. 10006889). (This reaction can be monitored by taking absorbance measurements at 655 nm prior to stopping the reactions; An OD$_{655}$ of 0.4-0.5 yields an OD$_{450}$ of approximately 1). Monitor development of sample wells to ensure adequate color development prior to stopping the reaction. NOTE: Do not overdevelop; however PC wells may need to overdevelop to allow adequate color development in sample wells.
3. Add 100 μl of Stop Solution per well being used. The solution within the wells will change from blue to yellow after adding the Stop Solution.
4. Read absorbance at 450 nm within five minutes of adding the Stop Solution. Blank the plate reader according to the manufacturer's requirements using the blank wells.
Assay Procedure Summary

NOTE: This procedure is provided as a quick reference for experienced users. Follow the detailed procedure when initially performing the assay.

1. Prepare CTFB as described in the Pre-Assay Preparation section, Table 3 on page 16.
2. Add 90 μl CTFB per sample well (80 μl if adding Competitor dsDNA), 100 μl to Blk and NSB wells.
3. Add 10 μl of Competitor dsDNA (optional) to appropriate wells.
4. Add 10 μl of Positive Control to appropriate wells.
5. Add 10 μl of Sample containing p53 to appropriate wells.
6. Incubate overnight at 4°C or one hour at room temperature without agitation.
7. Wash each well five times with 200 μl of 1X Wash Buffer.
8. Add 100 μl of diluted p53 Primary Antibody per well (except Blk wells).
9. Incubate one hour at room temperature without agitation.
10. Wash each well five times with 200 μl of 1X Wash Buffer.
11. Add 100 μl of diluted Secondary Antibody (except Blk wells).
12. Incubate one hour at room temperature without agitation.
13. Wash each well five times with 200 μl of 1X Wash Buffer.
14. Add 100 μl of Developing Solution per well.
15. Incubate 15 to 45 minutes with gentle agitation.
16. Add 100 μl of Stop Solution per well.
17. Measure the absorbance at 450 nm.

Table 6. Quick Protocol Guide

<table>
<thead>
<tr>
<th>Steps</th>
<th>Reagent</th>
<th>Blk</th>
<th>NSB</th>
<th>PC</th>
<th>C1</th>
<th>S1-S44</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Add reagents</td>
<td>CTFB</td>
<td>100 μl</td>
<td>100 μl</td>
<td>90 μl</td>
<td>80 μl</td>
<td>90 μl</td>
</tr>
<tr>
<td></td>
<td>Competitor dsDNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive Control</td>
<td>10 μl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 μl</td>
</tr>
<tr>
<td>2. Incubate</td>
<td>Cover plate and incubate overnight at 4°C or one hour at RT without agitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Wash</td>
<td>Wash all wells five times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Add reagents</td>
<td>Primary Antibody</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
<td></td>
</tr>
<tr>
<td>5. Incubate</td>
<td>Cover plate and incubate one hour at RT without agitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Wash</td>
<td>Wash all wells five times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Add reagents</td>
<td>Secondary Antibody</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
<td></td>
</tr>
<tr>
<td>8. Incubate</td>
<td>Cover plate and incubate one hour at RT without agitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Wash</td>
<td>Wash all wells five times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Add reagents</td>
<td>Developer Solution</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
<td></td>
</tr>
<tr>
<td>11. Incubate</td>
<td>Monitor development in wells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Add reagents</td>
<td>Stop Solution</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
<td>100 μl</td>
<td></td>
</tr>
<tr>
<td>13. Read</td>
<td>Read plate at wavelength of 450 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Characteristics

![Graph showing absorbance (450 nm) against nuclear extract (µg/well) for 6 hr. 800 µM NiCl₂ Stimulated HeLa Nuclear Extract (4.97 mg/ml) and Non-Stimulated HeLa Nuclear Extract (3.74 mg/ml).]

Interferences

The following reagents were tested for interference in the assay.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Will Interfere (Yes or No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGTA (≤ 1 mM)</td>
<td>No</td>
</tr>
<tr>
<td>EDTA (≤ 0.5 mM)</td>
<td>No</td>
</tr>
<tr>
<td>ZnCl (any concentration)</td>
<td>Yes</td>
</tr>
<tr>
<td>DTT (between 1 and 5 mM)</td>
<td>No</td>
</tr>
<tr>
<td>Dimethylsulfoxide (≤ 1.5%)</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 3. Assay of p53 from nickel chloride stimulated HeLa cell nuclear extracts
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Recommended Solutions</th>
</tr>
</thead>
</table>
| No signal or weak signal in all wells | A. Omission of key reagent
B. Plate reader settings not correct
C. Reagent/reagents expired
D. Salt concentrations affected binding between DNA and protein
E. Developing reagent used cold
F. Developing reagent not added to correct volume | A. Check that all reagents have been added and in the correct order; perform the assay using the Positive Control
B. Check wavelength setting on plate reader and change to 450 nm
C. Check expiration date on reagents
D. Reduce the amount of nuclear extract used in the assay, or reduce the amount of salt in the nuclear extracts (alternatively can perform buffer exchange)
E. Prewarm the Developing Solution to room temperature prior to use
F. Check pipettes to ensure correct amount of Developing Solution was added to wells |

| High signal in all wells | A. Incorrect dilution of antibody (too high)
B. Improper/inadequate washing of wells
C. Over-developing | A. Check antibody dilutions and use amounts outlined in instructions
B. Follow the protocol for washing wells using the correct number of times and volumes
C. Decrease the incubation time when using the developing reagent |

| High background (NSB) | Incorrect dilution of antibody (too high) | Check antibody dilutions and use amounts outlined in the instructions |

References

Warranty and Limitation of Remedy

Buyer agrees to purchase the material subject to Cayman’s Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website.

This document is copyrighted. All rights are reserved. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from Cayman Chemical Company.

©08/25/2016, Cayman Chemical Company, Ann Arbor, MI, All rights reserved. Printed in U.S.A.