1-Oleoyl Lysophosphatidic Acid (sodium salt)

Item No. 62215

CAS Registry No.: 22556-62-3
Formal Name: 1-O-9Z-octadecenoyl-sn-glyceryl-3-phosphoric acid, monosodium salt
Synonym: Oleoyl-sn-3-glycerophosphate
MF: C_{21}H_{40}O_7P • Na
FW: 458.5
Purity: ≥95%
Supplied as: A crystalline solid
Storage: -20°C
Stability: ≥2 years

Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis.

Warranty and Limitation of Remedy
Buyer agrees to purchase the material subject to Cayman’s Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website.

Laboratory Procedures

1-Oleoyl lysophosphatidic acid (sodium salt) is supplied as a crystalline solid. 1-Oleoyl lysophosphatidic acid (sodium salt) is sparingly soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide. For biological experiments, we suggest that organic solvent-free aqueous solutions of 1-oleoyl lysophosphatidic acid (sodium salt) be prepared by directly dissolving the crystalline compound in aqueous buffers. The solubility of 1-oleoyl lysophosphatidic acid (sodium salt) in PBS, (pH 7.2), is approximately 8.3 mg/ml. We do not recommend storing the aqueous solution for more than one day.

Description

1-Oleoyl lysophosphatidic acid is a species of lysophosphatidic acid (LPA) containing oleic acid at the sn-1 position. Phosphatidic acid is produced either directly through the action of PLD or through a two step process involving liberation of DAG by PLC followed by phosphorylation of DAG by diglycerol kinase.¹ Hydrolysis of the fatty acid at the sn-2 position by PLA₂ yields bioactive LPA. LPA binds to four different G-protein linked receptors² to mediate a variety of biological responses including cell proliferation, smooth muscle contraction, platelet aggregation, neurite retraction, and cell motility.¹ 1-Oleoyl lysophosphatidic acid is the most potent of the LPA analogs for calcium mobilization in A431 cells³ and for growth stimulation of a variety of cell lines.⁴

References