Filipin III
Item No. 70440

CAS Registry No.: 480-49-9
MF: C₃₅H₅₈O₁₁
FW: 654.8
Purity: ≥90%
UV/Vis.: \(\lambda_{\text{max}} \): 323, 339, 357 nm
Supplied as: A crystalline solid
Storage: -20°C
Stability: ≥1 year

Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis.

Laboratory Procedures

Filipin III is supplied as a crystalline solid. A stock solution may be made by dissolving the Filipin III in an organic solvent purged with an inert gas. Filipin III is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide. The solubility of Filipin III in these solvents is approximately 2, 5, and 10 mg/ml, respectively. We recommend using the stock solution within 24 hours or it may result in reduced activity.

Filipin III is sparingly soluble in aqueous buffers. Therefore, further dilutions of the organic solvent solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. For maximum solubility in aqueous buffers, Filipin III should first be dissolved in DMSO and then diluted with the aqueous buffer of choice. Filipin III has a solubility of approximately 0.4 mg/ml in a 1:4 solution of DMSO:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day.

Description

Cholesterol is both an important structural component of cell membranes and an early intermediate in hormone and bile acid biosynthesis. The localization and measurement of cholesterol in cells is therefore of great interest. Filipin is the collective name given to four isomeric polyene macrolides isolated from cultures of \(S. filipinensis \); Filipin III is the predominant isomer and the one used in most studies. Filipin binds to cholesterol in membranes, forming ultrastructural aggregates and complexes which can be visualized by freeze-fracture electron microscopy.¹,² The binding of cholesterol also decreases the intrinsic fluorescence of Filipin, and this property has also been used to detect cholesterol in membrane fractions.³

References