PRODUCT INFORMATION

Myristoleic Acid
Item No. 9002461

- **CAS Registry No.:** 544-64-9
- **Formal Name:** 9Z-tetradecenoic acid
- **Synonyms:** cis-9-Tetradecenoate, Oleomyristic Acid

- **MF:** C_{14}H_{26}O_{2}
- **FW:** 226.4
- **Purity:** ≥98%
- **Supplied as:** A solution in ethanol

Storage: -20°C
Stability: ≥1 year

Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis.

Laboratory Procedures

Myristoleic acid is supplied as a solution in ethanol. To change the solvent, simply evaporate the ethanol under a gentle stream of nitrogen and immediately add the solvent of choice. Solvents such as DMSO and dimethyl formamide purged with an inert gas can be used. The solubility of myristoleic acid in these solvents is approximately 2.5 mg/ml and 3 mg/ml, respectively.

Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. If an organic solvent-free solution of myristoleic acid is needed, it can be prepared by evaporating the ethanol and directly dissolving the neat oil in aqueous buffers. The solubility of myristoleic acid in PBS, pH 7.2, is approximately 2 mg/ml. We do not recommend storing the aqueous solution for more than one day.

Description

Myristoleic acid is a monounsaturated fatty acid found in the fruit extract of *S. repens* and in dairy extracts.\(^1,2\) It induces apoptosis and necrosis in human prostate cancer LNCaP cells at a rate of 8.8% and 8.1%, respectively.\(^1\) Myristoleic acid inhibits *C. albicans* germination *in vitro* with a minimal inhibitory concentration (MIC) of 9 µM.\(^2\) Furthermore, myristoleic acid inhibits osteogenesis *in vitro* via interference with cytoskeletal rearrangement and prevents RANKL-induced bone loss and osteoclast formation in mice.\(^3\)

References